Convex Is All You Need In Clustering

Gu, Yilin Jin, Xin
The Chinese University of Hong Kong, Shenzhen The Chinese University of Hong Kong, Shenzhen
School of Management and Economics (SME) School of Management and Economics (SME)
2210250120@1ink.cuhk.edu.cn 2210250130@1link.cuhk.edu.cn
Abstract

Convex clustering, a convex method in ameliorating K -means clustering and
hierarchical clustering, greatly improves the performances for traditional non-
convex clustering methods. To solve the instabilities and difficulties of non-convex
clustering, we address a few convex objective functions (including smooth and
non-smooth) and solve with Accelerated Gradient Method (AGM), CG-Newton
Method, Proximal Gradient Method (PGM), Alternating Direction Method of Mul-
tipliers (ADMM) and Stochastic Gradient Method (SGM). Compared all the convex
clustering methods with traditional K-means clustering method, we ultimately
obtain a better convergence and accuracy result from convex clustering.

1 Introduction

Clustering is a fundamental unsupervised learning problem and aims to assign observations into clus-
ters such that observations in the same group are similar to each other. Traditional clustering methods
such as K-means clustering, hierarchical clustering, and Gaussian mixture models apply greedy
searching method and suffer from instabilities due to their non-convex optimization formulations.
Also, traditional non-convex clustering models require prior knowledge about the number of clusters
which is not available in many applications. To overcome the instability issues of these traditional
clustering methods, a clustering algorithm based on optimization methods, Convex Clustering, has
been proposed (Hocking et al., 2011; Lindsten et al., 2011; Pelckmans et al., 2005).

For the basic idea of convex clustering, suppose we have a sample data matrix Sy, x, = {51, 82, ..., Sn}
with n observations and p features, we can construct two basic target objectives in solving clustering
problem and figure out the clusters we need. Assume that initially each data point corresponds to a
cluster ¢;. Then, the first target is that, we need to minimize the distances between clusters and all the
sample points to make data points cluster.

min %ELchi —siH2 (1)
Given we need to specify all the data points into several clusters and not let each data point categorize
into a cluster to increase the complexity of algorithm, we can assign data points s; and s; into the
same cluster if the convex distance of the corresponding clusters of 2 data points ||c] — c}|| < e.
And the second target is that, when we minimize ||c] — c}|| according to the tolerance ¢ that we set,
we can obtain the optimal number of clusters and optimal cluster choices based on minimization
(suppose the distance applies p norm, p = 1,2, ..., 00).
min 33, X5 e — Cj||p 2)
To solve both two objective functions together, we can add a regularization term -y on the Equation
(2) and sum up Equation (1) and (2) with regularization term.

1 2
min 52?:1”01' = sill” + v Z B alle — gl 3)

Nevertheless, given Equation (2) in Equation (3) is non-smooth, there are basically two approaches to
solve Equation (3). The first approach is to transform Equation (2) into a smooth term (e.g. Huber
norm, /2 norm square, etc.) so that gradient methods and Newton Methods can be used; the second
approach is to calculate the proximity operator of Equation (2) to generate a new direction which
can be used in Proximal Gradient Method (PGM) or Proximal Newton Method (PNM) with Armijo
condition. With proximity operator, another method we can apply is Alternating Direction Method
of Multipliers (ADMM), in which we can withdraw the non-smooth term as an epigraph term, and
apply ADMM on this constraint problem.

: 1 n n
min 21y [Je; - sil > + S0yt S
oi—i llei = ¢l <t
s.t. j=itl illp =i (5)
{ epillcllp == {(c,t) € R x R ||c][, < t}

Moreover, we can also add a weight on the Equation (2) so that we can focus more on the points with
large distance in which we add a larger weight on it. Also, we can solve the Equation (6) with PGM
and PNM.

o1
min o X |lei — sill® + 72 S wislle: — gl (6)

In this paper, we mainly solve these approaches with Accelerated Gradient Method (AGM), CG-
Newton Method, Proximal Gradient Method (PGM), Alternating Direction Method of Multipliers
(ADMM) and Stochastic Gradient Method (SGM) and compare all these results with traditional
K-means clustering method.

2 Literature Review

A related paper on convex clustering is efficient implementations proposed by Chi and Lange (2015)
and its extension to convex biclustering has been developed by Chi et al. (2016). Two efficient
algorithms PGM and ADMM are introduced while they are mainly designed for clustering low-
dimensional data. In order to address high dimensionality problem, one key ingredient of our sparse
convex clustering method is a regularization penalty built upon their PGM and ADMM algorithms
to encourage clusters. As will be shown in experimental studies, such regularization step is able
to significantly improve the clustering accuracy in clustering problems compared with K-means
Clustering.

Another line of research focuses on simultaneous clustering and feature selection. Some approaches
are model-based clustering methods, such as Raftery and Dean (2006), Pan and Shen (2007), Wang
and Zhu (2008), Xie et al. (2010), and Guo et al. (2010). In contrast, some approaches are model-free,
such as Witten and Tibshirani (2010), Sun et al. (2012), and Wang et al. (2013). One common
building block of these clustering approaches is the usage of a lasso type penalty for feature selection.
For example, Witten and Tibshirani (2010) developed a unified framework for feature selection in
clustering using the lasso penalty (Tibshirani, 1996). Sun et al. (2012) proposed a sparse K -means
using the group-lasso penalty (Yuan and Lin, 2006). We refer readers to Alelyani et al. (2013) for a
thorough overview. In spite of their good numeric performance, these sparse clustering procedures
still suffer from instabilities due to the non-convex optimization formulations. To overcome it, our
constructions on objective function solves a convex optimization problem with AGM, CG-Newton,
PGM, ADMM and SGM which ensure a unique global solution.

3 Convex Clustering

For the rest part of this paper, section 3.1 will briefly introduce how we prepare the data. With respect
to section 3.2, 3.3, 3.4 and 3.5, we’ll mainly introduce and analyze the AGM, CG-Newton algorithm
on Equation (3) with Huber norm in section 3.2; PGM will be applied to solve Equation (3) with
non-smooth term in section 3.3; With the proximity operator obtained from section 3.3, we’ll apply it
into ADMM method in section 3.4; ultimately, we choose m(m < n) sample points from n points
and apply SGM on these sample data points.

3.1 Data Preparation

In this part, we mainly concern data generation and data preparation for our optimization problems.
We prepare and discuss two categories of data: self-generated data points in two-dimensions and
datasets derived from real-world large-scale applications. With respect to self-generated data points,
we use np.random.normal in python numpy to generate 3 different datasets (pictures of data points
can be shown as follows).

datasetl dataset2 dataset3

. o.oo

ﬂl...:. ~ .,. :-.7‘, y -'\ 6

\l‘ 5..;

LIS .
.-.‘ i.l * e
‘.,,. n' od

Figure 1: Self-generated Data Points

With regards to the real-world large-scale dataset, we download wine.mat from website
https://www.csie.ntu.edu.tw/cjlin/libsvm/ to make analysis.

3.2 Huber Norm: AGM and CG-Newton’s Method

To transform the p-norm in Equation (3) to a term that can calculate the gradient and hessian, we
consider /2 norm square and Huber norm to make transformation. In comparison, huber norm has a
better result than /2 norm square, so we ultimately take Huber norm as transformation term. After we
apply Huber norm, the objective function can be written as follows,

1

— 52?:”‘02 sl” + 72 12] z+1@hub(cj) (N

While the Huber norm and its gradient can be written as follows,

2 . 2
— 25”3/” if[lyll* <6)

Pranly) { Iyl =3 ifllyll> > 6
4 ifllyl* <o

V = s . - 9
@hub@» { ﬂ%ﬂ ZnyHz) 9)

According to Equation (8) and (9), we first apply AGM algorithm (because especially for the large

scale data in the real world, speed is essential) with the following parameters: oy = %, By = %,

ty = %(1 +4/1+4t3), and sett_; =ty = 1. Also, we calculate the Lipschitz constant L for
Equation (7),
L=1+ n% (10)

According to Equation (7), (8), (9), (10), we write AGM algorithm with python, the main codes
shown as follows,

def acc_gradient_method_huber (f, tol):
start=time.time ()

x_minus_1=x0

t_minus_1=1

x=[x_minus_1,x0]

t=[t_minus_1]

f_grad, xO0,

TN =S

while np.abs(np.linalg.norm(f_grad(x[-1]))>=tol) and len(x)<
max_iter:
alphak = 1/
if len(x) !=2:
tk = (1/2) *(1+(1+4*(t[-1]) *x2) *x(1/2))
else:
tk = t_minus_1 #t(-1)=t0
t.append (tk)#add tk into t list
betak = (t[-2]-1)/t[-1]# here t[-1] means tk for tk has been
added.
y = x[-1]+betak*(x[-1]-x[-2])
x.append (y-alphak*f_grad (y))

end=time.time ()
duration=end-start
return {’converge_point’:x[-1],’iter_num’:len(x)-1,’time’:duration

}
Listing 1: AGM algorithm

And we can obtain the convergence plot and result shown as follows,

Table 1: Results of Accelerated Gradient Method with Backtracking

dataset tol iter time

dataset 1 1073 101 5.5s
dataset 2 1073 232 10.3s
dataset 3 10~2 136 7.1s
wine 1073 558 23.7s

Figure 2: Convergence Plot for AGM Algorithm

According to the convergence result in Figure 2 and results in Table 1, we find that although AGM
does not converge well under tol = 1072, in such tolerance, it reaches tol < 1073 in a fast speed in
all the 4 datasets. Also, we use the same method to obtain the convergence plot and results from
CG-Newton Method.

Table 2: Results of CG-Newton Method

dataset tol iter time

dataset 1 1073 57 2.3s
dataset 2 1073 89 4.3s
dataset 3 10~2 78 3.7s
wine 1073 228 13.2s

Ultimately, with CG-Newton Method, we obtain the final clustering results shown as follows.

Figure 3:

Figure 4: Results for CG-Newton Method

3.3 Non-smooth Term: Proximal Gradient Method

With respect to Proximal Gradient Method (PGM), we choose the {1 norm and add weights on
different distances. To make a higher weight added on a larger distance, we can generally put a
non-zero weight only for a pair of points which are nearby each other, and we write our weights as
the follows (p is a set in which it contains the groups of (i, j), while i and j derive from the data point
of s; and its k-nearest neighbors s;),

Cf etllsislP f () e p
Wi = { 0 otherwise "

According to the weights proposed, we then calculate and obtain the proximity function for the /1

norm term as function f(.) in Equation (6), (¢ > 0 and norm 7(.), C* = ¢f — c&

1
proze-(C* = AVF(C)) = CF = argminfor(v) + 5[|C* = AVF(CY) = v[fi] (12)
In Equation (12), we also calculate v within proximity operator,
1 _ w
v:argm1n§||vf(cifcjfv 1/\)||f+ﬁ)l7||fu||2 (13)

With Equation (13), we write our main python codes as follows,

I import warnings

2 import numpy as np

3 from scipy import optimize

4 from scipy import linalg

6 def fmin_cgprox(f, f_prime, g_prox, x0, rtol=1le-6,

7 maxiter=1000, verbose=0, default_step_size=1.):
8

9 xk = x0

10 fk_old = np.inf

1

©

fk, grad_fk = f(xk), f_prime(xk)
success = False
for it in range (maxiter):
.. step 1
Find suitable step size
step_size = default_step_size # initial guess
grad_fk = f_prime (xk)
while True: # adjust step size
xk_grad = xk - step_size * grad_fk
prx = g_prox(xk_grad, step_size)
Gt = (xk - prx) / step_size
lhand = f(xk - step_size * Gt)
rhand = fk - step_size * grad_fk.dot(Gt) + \
(0.5 * step_size) * Gt.dot(Gt)
if lhand <= rhand:
step size found

break
else:
backtrack, reduce step size
step_size *= .5
xk -= step_size * Gt

fk_old = fk
fk, grad_fk = f(xk), f_prime(xk)

if verbose > 1:
print ("Iteration %s, Error: %s" % (it, linalg.norm(Gt)))

if np.abs(fk_old - fk) / fk < rtol:
if verbose:
print ("Achieved relative tolerance at iteration %s" %
it)
success = True
break
else:
warnings .warn (
"fmin_cgprox did not reach the desired tolerance level",
RuntimeWarning)

return optimize.OptimizeResult(
x=xk, success=success, fun=fk, jac=grad_fk, nit=it)

Listing 2: PGM algorithm

So, with Equation (13), we can calculate the new direction for the gradient method with Armijo
condition. We’ll compare the final result of PGM and ADMM in Section 3.4.

3.4 Non-smooth Term: Alternating Direction Method of Multipliers

This subsection discusses two efficient optimization approaches to solve the convex clustering by
adopting a similar computational strategy used in Chi and Lange (2015). Our aproach is based
on the alternating direction method of multipliers (ADMM) algorithm (Boyd et al., 2011; Gabay
and Mercier, 1976; Glowinski and Marroco, 1975). So, firstly, we rewrite our function to create
constraints with epigraph as follows,

1
min 52?:1”01- — SiHQ + X wit; (14)
D i llei = ¢ll, <t
s.t. j=itl illp = Ui (15)
{ epillc|[p == {(c;t) € R" x R |lc[|, <t}

In the 2-block structure, our ADMM structure for Equation (14) and (15) can be written as,

&t = grgmin Ly(c, tk,yk) (16)

tF = arg mtin Ly (c* 1t 4%) (17)

Yy =yt (T (18)
With Equation (13), we update c, ¢t and y in Equation (16), (17), (18) for each iteration. And finally
we obtain the results for PGM and ADMM algorithm shown in Table 3 and Table 4.

It seems that Proximal Gradient Method performs better than the Alternating Direction Method of
Multipliers, but we consider it might exist some errors on the process of calculation or coding because
it spend too many iterations and too much time. For the time constraint, we’ll check this process with
more cautious and try to solve it in the future.

Table 3: Results of Proximal Gradient Method

dataset tol iter time

dataset 1 10~3 457 2124s
dataset 2 1073 689 435.6s
dataset 3 10~3 578 323.8s
wine 1073 - -

Table 4: Results of Alternating Direction Method of Multipliers

dataset tol iter time

dataset 1 10~2 778 533.7s
dataset 2 1073 - -
dataset_3 1073 963 1628.4s
wine 1073 - -

3.5 Huber Norm: Stochastic Gradient Method

Ultimately, we choose Stochastic Gradient Method (SGM), in which we choose m sample points
from total n (m < n) points to minimize the objective function. With respect to this method, we
basically apply AGM as our baseline and compare the results of SGM-AGM and SGM. The results
are shown as follows in Table 5.

Table 5: Results of Stochastic Gradient Method

dataset tol iter time

dataset 1 1073 36 1.3s
dataset 2 1073 57 2.2s
dataset 3 10~2 39 1.3s
wine 1073 88 2.5s

Although the speed seems well in the SGM, the convergence and accuracy is not good as those in
AGM.

4 Acknowledgment

We want to show our deep gratefulness and express our gratitude to Prof. Andre Milzarek and
Instructor Xuanye. Without their descent help in this semester, we are not able to finish this work
right now. Although we only have 2 members in our group, we pay all of our efforts possible to finish
this work. Really wish you will feel enjoyable after reading this work, thank you!

References

[1] Hocking, T. D., Joulin, A., Bach, F., and Vert, J.-P. (2011). Clusterpath: An Algorithm for Clustering using
Convex Fusion Penalties. Proceedings of the 28th International Conference on Machine Learning (ICML).

[2] Lindsten, F., Ohlsson, H., and Ljung, L. (2011). Clustering sum-of-norms regularization: With application to
particle filter output computation. In Statistical Signal Processing Workshop (SSP), pages 201-204. IEEE.

[3] Pelckmans, K., De Brabanter, J., Suykens, J., and De Moor, B. (2005). Convex clutering shrinkage. In
PASCAL Workshop on Statistics and Optimization of Clustering Workshop.

[4] Chi, E. C. and Lange, K. (2015). Splitting Methods for Convex Clustering. Journal of Computational and
Graphical Statistics, 24(4):994-1013.

[5] Chi, E. C., Allen, G. 1., and Baraniuk, R. G. (2016). Convex biclustering. Biometrics.

[6] Raftery, A. and Dean, N. (2006). Variable selection for model-based clustering. Journal of the American
Statistical Association, 101:168—178.

[7] Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection.
Journal of Machine Learning Research, 8:1145-1164.

[8] Wang, S. and Zhu, J. (2008). Variable selection for model-based high-dimensional clustering and its
application to microarray data. Biometrics, 64:440—448.

[9] Xie, B., Pan, W., and Shen, X. (2010). Variable selection in penalized model-based clustering via regulariza-
tion on grouped parameters. Biometrics, 64:921-930.

[10] Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2010). Pairwise variable selection for high-dimensional
model-based clustering. Biometrics, 66:793-8

[11] Sun, W., Wang, J., and Fang, Y. (2012). Regularized k-means clustering of high-dimensional data and its
asymptotic consistency. Electronic Journal of Statistics, 6(April 2011):148-167.

[12] Wang, Y., Fang, Y., and Wang, J. (2013). Sparse optimal discriminant clustering. Statistics and Computing,
pages 1-11.

[13] Witten, D. and Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the
American Statistical Association, 105:713-726.

[14] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267-288.

[15] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67.

[16] Alelyani, S., Tang, J., and Liu, H. (2013). Feature slection for clustering: review. In In Data Clustering:
Algorithms and Applications. Edited by: Charu A, Chandan R. CRC Press.

	Introduction
	Literature Review
	Convex Clustering
	Data Preparation
	Huber Norm: AGM and CG-Newton's Method
	Non-smooth Term: Proximal Gradient Method
	Non-smooth Term: Alternating Direction Method of Multipliers
	Huber Norm: Stochastic Gradient Method

	Acknowledgment

