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Optimization Problem

Problem 1

minx∈Rn f (x) := 1
n

∑n
i=1 fi (x)

▶ Each fi : Rn → R is strongly convex with constant µ.

▶ Each ∇fi : Rn → Rn is Lipschitz continuous with constant L.

Problem 2

minx∈Rn F (x) := f (x) + h(x)

▶ Function h : Rn → R is convex but potentially nonsmooth.

▶ The proximal operation of h is easy to compute.
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GD Versus SGD

Optimization problem: minx∈Rn f (x) := 1
n

∑n
i=1 fi (x).

GD

xk+1 = xk − γ∇f (xk)

Pros: Can use constant stepsize γ and achieve linear convergence.

Cons: Evaluation of gradient ∇f (x) is expensive.

SGD

xk+1 = xk − γk∇fj(x
k)

Pros: Evaluate few gradient per iteration.

Cons: Stepsize {γk}k is decreasing which leads to sublinear convergence.

Motivation: To combine the advantages of both GD and SGD.
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Stochastic Perspective (I)

Define random variable G : Ω → Rn, Ω := {1, · · · , n} as

G =


∇f1(x

k), w.p. 1
n

∇f2(x
k), w.p. 1

n
...

∇fn(x
k), w.p. 1

n

Notice that E[G ] = 1
n

∑n
i=1 ∇fi (x

k) = ∇f (xk).

GD

xk+1 = xk − γ∇f (xk) = xk − γE[G ]

Pros: Can use constant stepsize γ and achieve linear convergence.

Cons: Evaluation of gradient E[G ] is expensive.
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Stochastic Perspective (II)

Define random variable G : Ω → Rn, Ω := {1, · · · , n} as

G =


∇f1(x

k), w.p. 1
n

∇f2(x
k), w.p. 1

n
...

∇fn(x
k), w.p. 1

n

Note that j is chosen randomly uniformly from {1, · · · , n}.

SGD

xk+1 = xk − γk∇fj(x
k) = xk − γkG

Pros: Evaluate few gradient per iteration.

Cons: Stepsize {γk}k is decreasing which leads to sublinear convergence.
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Variance Reduction

GD: xk+1 = xk − γ · E[G ]

SGD: xk+1 = xk − γk · G

Goal: Use some random variable Z to estimate E[G ] = ∇f (xk) with less
cost and variance so that to use constant stepsize.

New Algorithm: xk+1 = xk − γ · Z

Consider a random variable

Z = G − Y + E[Y ]

▶ Z is a unbiased estimator of ∇f (xk) because E[Z ] = E[G ].

▶ The variance of Z diminishes as G and Y become more correlated

Var(Z ) = Var(G ) + Var(Y )− 2Cov(G ,Y ).

Question: How to choose the random variable Y ?
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Variance Reduction Algorithms
Space Versus Time

Iteration: xk+1 = xk − γZ

▶ The index j is chosen randomly uniformly from set {1, · · · , n}.

▶ SAGA: Set the random variable Z as

Z = ∇fj(x
k)

G

−∇fj(ϕ
k
j )

Y

+

E[Y ]

1

n

n∑
i=1

∇fi (ϕ
k
i )

Store ∇fj(ϕ
k+1
j ) = ∇fj(x

k) and ∇fi (ϕ
k+1
i ) = ∇fi (ϕ

k
i ) for i ̸= j .

▶ SVRG: Set the random variable Z as

Z = ∇fj(x
k)

G

−∇fj(x̃)

Y

+

E[Y ]

1

n

n∑
i=1

∇fi (x̃)

Compute the full gradient f (x̃) after m iterations.

SAGA Introduction to Variance Reduction Yilin Gu (SDS/SME) 7



Variance Reduction Algorithms
Space Versus Time

Iteration: xk+1 = xk − γZ

▶ The index j is chosen randomly uniformly from set {1, · · · , n}.

▶ SAGA: Set the random variable Z as

Z = ∇fj(x
k)

G

−∇fj(ϕ
k
j )

Y

+

E[Y ]

1

n

n∑
i=1

∇fi (ϕ
k
i )

Store ∇fj(ϕ
k+1
j ) = ∇fj(x

k) and ∇fi (ϕ
k+1
i ) = ∇fi (ϕ

k
i ) for i ̸= j .

▶ SVRG: Set the random variable Z as

Z = ∇fj(x
k)

G

−∇fj(x̃)

Y

+

E[Y ]

1

n

n∑
i=1

∇fi (x̃)

Compute the full gradient f (x̃) after m iterations.

SAGA Introduction to Variance Reduction Yilin Gu (SDS/SME) 7



SAGA: Algorithm Framework

At k-th iteration

▶ Pick j uniformly from {1, · · · , n};
▶ Update x using ∇fj(ϕ

k
j ),∇fj(x

k) and the table average

xk+1 = xk − γ

(
∇fj(x

k)−∇fj(ϕ
k
j ) +

1

n

n∑
i=1

∇fi (ϕ
k
i )

)

▶ Update the table by setting ∇fj(ϕ
k+1
j ) = ∇fj(x

k) and ∀i ̸= j ,

∇fi (ϕ
k+1
i ) = ∇fi (ϕ

k
i );

Example: Consider n = 3 and j = 2, the update of table:

Old New

∇f1(ϕ1) ∇f1(ϕ1)

∇f2(ϕ2) ∇f2(x)

∇f3(ϕ3) ∇f3(ϕ3)
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Theoretical Result

▶ Define the Lyapunov function T , where c = 1
2γ(1−γµ)n

T k := T (xk , {ϕk
i }ni=1)

:=
1

n

n∑
i=1

fi (ϕ
k
i )−

≤fi (ϕ
k
i )[

fi (x
∗) +

〈
∇fi (x

∗), ϕk
i − x∗

〉]
+c∥xk − x∗∥2.

▶ (Main Theorem) Run SAGA with constant stepsize γ = 1
2(µn+L) ,

E[T k+1] ≤ (1− 1

κ
) · T k ,

where the constant κ = 1
γµ .

▶ (Corollary) Since ∥xk − x∗∥2 ≤ T k/c for all k ∈ N,

E[∥xk − x∗∥2] ≤
(1− 1

κ )
kT 0

c
.
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