

Optimization Problem

Problem 1

$$\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$$

- ▶ Each $f_i : \mathbb{R}^n \to \mathbb{R}$ is strongly convex with constant μ .
- ▶ Each $\nabla f_i : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

Problem 2

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + h(x)$$

- ▶ Function $h: \mathbb{R}^n \to \mathbb{R}$ is convex but potentially nonsmooth.
- ightharpoonup The proximal operation of h is easy to compute.

Optimization Problem

Problem 1

$$\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$$

- ▶ Each $f_i : \mathbb{R}^n \to \mathbb{R}$ is strongly convex with constant μ .
- ▶ Each $\nabla f_i : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

Problem 2

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + h(x)$$

- ▶ Function $h: \mathbb{R}^n \to \mathbb{R}$ is convex but potentially nonsmooth.
- ▶ The proximal operation of *h* is easy to compute.

GD Versus SGD

Optimization problem: $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$.

GD

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$

Pros: Can use constant stepsize γ and achieve linear convergence.

Cons: Evaluation of gradient $\nabla f(x)$ is expensive.

SGD

$$x^{k+1} = x^k - \gamma_k \nabla f_j(x^k)$$

Pros: Evaluate few gradient per iteration.

Cons: Stepsize $\{\gamma_k\}_k$ is decreasing which leads to sublinear convergence.

Motivation: To combine the advantages of both GD and SGD.

GD Versus SGD

Optimization problem: $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$.

GD

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$

Pros: Can use constant stepsize γ and achieve linear convergence.

Cons: Evaluation of gradient $\nabla f(x)$ is expensive.

SGD

$$x^{k+1} = x^k - \gamma_k \nabla f_j(x^k)$$

Pros: Evaluate few gradient per iteration.

Cons: Stepsize $\{\gamma_k\}_k$ is decreasing which leads to sublinear convergence.

Motivation: To combine the advantages of both GD and SGD.

Stochastic Perspective (I)

Define random variable $G: \Omega \to \mathbb{R}^n, \ \Omega := \{1, \cdots, n\}$ as

$$G = \begin{cases} \nabla f_1(x^k), & \text{w.p. } \frac{1}{n} \\ \nabla f_2(x^k), & \text{w.p. } \frac{1}{n} \\ \vdots & & \\ \nabla f_n(x^k), & \text{w.p. } \frac{1}{n} \end{cases}$$

Notice that $\mathbb{E}[G] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x^k) = \nabla f(x^k)$.

GD

$$x^{k+1} = x^k - \gamma \nabla f(x^k) = x^k - \gamma \mathbb{E}[G]$$

Pros: Can use constant stepsize γ and achieve linear convergence.

Cons: Evaluation of gradient $\mathbb{E}[G]$ is expensive.

Stochastic Perspective (II)

Define random variable $G:\Omega\to\mathbb{R}^n,\ \Omega:=\{1,\cdots,n\}$ as

$$G = \begin{cases} \nabla f_1(x^k), & \text{w.p. } \frac{1}{n} \\ \nabla f_2(x^k), & \text{w.p. } \frac{1}{n} \\ \vdots \\ \nabla f_n(x^k), & \text{w.p. } \frac{1}{n} \end{cases}$$

Note that j is chosen randomly uniformly from $\{1, \dots, n\}$.

SGD

$$x^{k+1} = x^k - \gamma_k \nabla f_j(x^k) = x^k - \gamma_k G$$

Pros: Evaluate few gradient per iteration.

Cons: Stepsize $\{\gamma_k\}_k$ is decreasing which leads to sublinear convergence.

Variance Reduction

GD:
$$x^{k+1} = x^k - \gamma \cdot \mathbb{E}[G]$$

SGD:
$$x^{k+1} = x^k - \gamma_k \cdot G$$

Goal: Use some random variable Z to estimate $\mathbb{E}[G] = \nabla f(x^k)$ with less cost and variance so that to use constant stepsize.

New Algorithm:
$$x^{k+1} = x^k - \gamma \cdot Z$$

Consider a random variable

$$Z = G - Y + \mathbb{E}[Y]$$

- ▶ Z is a unbiased estimator of $\nabla f(x^k)$ because $\mathbb{E}[Z] = \mathbb{E}[G]$.
- ▶ The variance of Z diminishes as G and Y become more correlated

$$Var(Z) = Var(G) + Var(Y) - 2Cov(G, Y).$$

Question: How to choose the random variable *Y*?

Variance Reduction

GD:
$$x^{k+1} = x^k - \gamma \cdot \mathbb{E}[G]$$

SGD:
$$x^{k+1} = x^k - \gamma_k \cdot G$$

Goal: Use some random variable Z to estimate $\mathbb{E}[G] = \nabla f(x^k)$ with less cost and variance so that to use constant stepsize.

New Algorithm:
$$x^{k+1} = x^k - \gamma \cdot Z$$

Consider a random variable

$$Z = G - Y + \mathbb{E}[Y]$$

- ▶ Z is a unbiased estimator of $\nabla f(x^k)$ because $\mathbb{E}[Z] = \mathbb{E}[G]$.
- ▶ The variance of Z diminishes as G and Y become more correlated

$$Var(Z) = Var(G) + Var(Y) - 2Cov(G, Y).$$

Question: How to choose the random variable Y?

Variance Reduction Algorithms

Space Versus Time

Iteration:
$$x^{k+1} = x^k - \gamma Z$$

- ▶ The index j is chosen randomly uniformly from set $\{1, \dots, n\}$.
- ► **SAGA**: Set the random variable Z as $Z = \underbrace{\nabla f_j(x^k)}_{G} \underbrace{\nabla f_j(\phi_j^k)}_{Y} + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\phi_i^k)$

Store
$$\nabla f_j(\phi_j^{k+1}) = \nabla f_j(x^k)$$
 and $\nabla f_i(\phi_i^{k+1}) = \nabla f_i(\phi_i^k)$ for $i \neq j$.

▶ **SVRG:** Set the random variable Z as $\mathbb{E}[Y]$ $Z = \nabla f_j(x^k) - \nabla f_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{x})$

Variance Reduction Algorithms

Space Versus Time

Iteration:
$$x^{k+1} = x^k - \gamma Z$$

- ▶ The index j is chosen randomly uniformly from set $\{1, \dots, n\}$.
- ► **SAGA**: Set the random variable Z as $Z = \underbrace{\nabla f_j(x^k)}_{G} \underbrace{\nabla f_j(\phi_j^k)}_{Y} + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\phi_i^k)$

Store $\nabla f_j(\phi_j^{k+1}) = \nabla f_j(x^k)$ and $\nabla f_i(\phi_i^{k+1}) = \nabla f_i(\phi_i^k)$ for $i \neq j$.

▶ **SVRG:** Set the random variable Z as $Z = \nabla f_j(x^k) - \nabla f_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{x})$

SAGA: Algorithm Framework

At k-th iteration

- ▶ Pick j uniformly from $\{1, \dots, n\}$;
- ▶ Update x using $\nabla f_j(\phi_i^k)$, $\nabla f_j(x^k)$ and the table average

$$x^{k+1} = x^k - \gamma \left(\nabla f_j(x^k) - \nabla f_j(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\phi_i^k) \right)$$

▶ Update the table by setting $\nabla f_j(\phi_j^{k+1}) = \nabla f_j(x^k)$ and $\forall i \neq j$, $\nabla f_i(\phi_i^{k+1}) = \nabla f_i(\phi_i^k)$;

Example: Consider n = 3 and j = 2, the update of table:

Old	New
$\nabla f_1(\phi_1)$	$\nabla f_1(\phi_1)$
$\nabla f_2(\phi_2)$	$\nabla f_2(x)$
$\nabla f_3(\phi_3)$	$\nabla f_3(\phi_3)$

Theoretical Result

▶ Define the Lyapunov function T, where $c = \frac{1}{2\gamma(1-\gamma\mu)n}$

$$T^{k} := T(x^{k}, \{\phi_{i}^{k}\}_{i=1}^{n})$$

$$:= \frac{1}{n} \sum_{i=1}^{n} f_{i}(\phi_{i}^{k}) - \left[f_{i}(x^{*}) + \left\langle \nabla f_{i}(x^{*}), \phi_{i}^{k} - x^{*} \right\rangle\right] + c\|x^{k} - x^{*}\|^{2}.$$

▶ (Main Theorem) Run SAGA with constant stepsize $\gamma = \frac{1}{2(\mu n + L)}$,

$$\mathbb{E}[T^{k+1}] \le (1 - \frac{1}{\kappa}) \cdot T^k,$$

where the constant $\kappa = \frac{1}{\gamma \mu}$.

▶ (Corollary) Since $||x^k - x^*||^2 \le T^k/c$ for all $k \in \mathbb{N}$,

$$\mathbb{E}[\|x^k - x^*\|^2] \le \frac{(1 - \frac{1}{\kappa})^k T^0}{c}.$$

Theoretical Result

▶ Define the Lyapunov function T, where $c = \frac{1}{2\gamma(1-\gamma\mu)n}$

$$\begin{split} T^k &:= T(x^k, \{\phi_i^k\}_{i=1}^n) \\ &:= \frac{1}{n} \sum_{i=1}^n f_i(\phi_i^k) - \overline{\left[f_i(x^*) + \left\langle \nabla f_i(x^*), \phi_i^k - x^* \right\rangle \right]} + c \|x^k - x^*\|^2. \end{split}$$

▶ (Main Theorem) Run SAGA with constant stepsize $\gamma = \frac{1}{2(\mu n + L)}$,

$$\mathbb{E}[T^{k+1}] \le (1 - \frac{1}{\kappa}) \cdot T^k,$$

where the constant $\kappa = \frac{1}{\gamma \mu}$.

▶ (Corollary) Since $||x^k - x^*||^2 \le T^k/c$ for all $k \in \mathbb{N}$,

$$\mathbb{E}[\|x^k - x^*\|^2] \le \frac{(1 - \frac{1}{\kappa})^k T^0}{c}.$$

