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Optimization Problem

Problem 1

» Each f; : R" — R is strongly convex with constant p.
» Each V£, : R" — R" is Lipschitz continuous with constant L.
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Optimization Problem

Problem 1

» Each f; : R" — R is strongly convex with constant p.
» Each V£, : R" — R" is Lipschitz continuous with constant L.

Problem 2

Minyegrn F(x) := f(x) + h(x)

» Function h: R" — R is convex but potentially nonsmooth.

» The proximal operation of h is easy to compute.
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GD Versus SGD
Optimization problem: minyecr f(x) =237 | fi(x).

GD

’XH_I = xk — 4 VF(xk) ‘

Pros: Can use constant stepsize v and achieve linear convergence.

Cons: Evaluation of gradient Vf(x) is expensive.
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GD Versus SGD

Optimization problem: minyecr f(x) =237 | fi(x).

GD

’XH_I = xk — 4 VF(xk) ‘

Pros: Can use constant stepsize v and achieve linear convergence.

Cons: Evaluation of gradient Vf(x) is expensive.

SGD

’XkJrl — ok _ kaﬂ_(xk) ‘

Pros: Evaluate few gradient per iteration.

Cons: Stepsize {7}« is decreasing which leads to sublinear convergence.

Motivation: To combine the advantages of both GD and SGD. I
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Stochastic Perspective (I)

Define random variable G : Q@ — R", Q:={1,--- ,n} as

VA(xK), w.p. %

Vh(x*), wp. 5
G = _

Vi (x¥), w.p. %

Notice that E[G] = 1 37 | V£i(x¥) = VF(x¥).
GD

’xk“ = xk — 4 VF(xk) = xk — vE[G] ‘

Pros: Can use constant stepsize v and achieve linear convergence.

Cons: Evaluation of gradient E[G] is expensive.
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Stochastic Perspective (II)

Define random variable G : Q = R", Q:={1,--- ,n} as

VA(xK), w.p. %
Vh(x*), wp. 5
G= _
Vi(x¥), w.p. *
Note that j is chosen randomly uniformly from {1,---  n}.

SGD

Xkl = xk — 3 Vi (xK) = xk — G

Pros: Evaluate few gradient per iteration.

Cons: Stepsize {7k}« is decreasing which leads to sublinear convergence.




Variance Reduction

GD: x"=x"—~-
SGD: x'fl=xk_-, .G
Goal: Use some random variable Z to estimate E[G] = Vf(x*) with less

cost and variance so that to use constant stepsize.

New Algorithm: x*t1 =xk —~.Z
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Variance Reduction

GD: xKt1=xk_— v -
SGD: xffl=xk_—-,.G

Goal: Use some random variable Z to estimate E[G] = Vf(x*) with less
cost and variance so that to use constant stepsize.

New Algorithm: x*t1 =xk —~.Z

Consider a random variable

|Z=G-Y+E[Y]|

» Z is a unbiased estimator of Vf(x*) because E[Z] = E[G].
» The variance of Z diminishes as G and Y become more correlated

Var(Z) = Var(G) + Var(Y) — 2Cov(G, Y).

Question: How to choose the random variable Y? '




Variance Reduction Algorithms

Iteration: x**! = xk —~yZ
» The index j is chosen randomly uniformly from set {1,--- , n}.
» SAGA: Set the random variable Z as E[Y]

Z

<h

V)~ V() + > VA(h)
i=1

G Y

V£i(x¥) and Vfi(¢f ™) = Vi(gf) for i # .

Store Vﬂ(qﬁj’-‘ﬂ)




Variance Reduction Algorithms

Iteration: x**! = xk —~yZ
» The index j is chosen randomly uniformly from set {1,--- , n}.
» SAGA: Set the random variable Z as E[Y]

Z

<h

V)~ V() + > VA(h)
i=1

G Y

V£i(x¥) and Vfi(¢f ™) = Vi(gf) for i # .

Store Vﬂ(qﬁj’-‘ﬂ)

» SVRG: Set the random variable Z as E[Y]

1 n
Z = Vf(x*) = V{(R) + = § V£i(X)
ITI ITI n i1




SAGA: Algorithm Framework

At k-th iteration

» Pick j uniformly from {1,--- , n};
» Update x using V)j-(gbj’-‘),ij(Xk) and the table average

Xt = Xk =y <Vf,-(x") = VA(9f) + % > Vf,-(¢,-k)>
i=1

» Update the table by setting V(¢*!) = V£(x*) and Vi # j,
V) = VA(#D):

Example: Consider n = 3 and j = 2, the update of table:

Oold New
V(1) | VAa(ér)
Vh(¢2) [ Vh(X)
Vi(¢s) | Vi(¢3)

Yilin Gu (SDS/SME)



Theoretical Result

1

» Define the Lyapunov function T, where ¢ = T (R

TH = T {6 o)

1 . ' * * *
3T — [6GC) + (VAG), 0 — )] el — x|
i=1
» (Main Theorem) Run SAGA with constant stepsize v = ﬁ
k+1 1 k
E[TF ] <(1—-=) - T%,
K

where the constant kK = %
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Theoretical Result

» Define the Lyapunov function T, where ¢ = m

T = T(x* {¢/}1-1)
<fi(¢f)

%Z F68) — [(x") + (VA(). 0 —x*)] el — x|

» (Main Theorem) Run SAGA with constant stepsize v = m

E[Tk+1] < (1 o 1) . Tk,
K

where the constant kK = %

» (Corollary) Since ||x* — x*||> < T*/c for all k € N,

(1 _ %)k TO

E[lx" - x*|*] <

c




