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CONVERGENCE RATE OF O(1/k) FOR OPTIMISTIC GRADIENT
AND EXTRAGRADIENT METHODS IN SMOOTH
CONVEX-CONCAVE SADDLE POINT PROBLEMS⇤
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Abstract. We study the iteration complexity of the optimistic gradient descent-ascent (OGDA)
method and the extragradient (EG) method for finding a saddle point of a convex-concave uncon-
strained min-max problem. To do so, we first show that both OGDA and EG can be interpreted
as approximate variants of the proximal point method. This is similar to the approach taken in (A.
Nemirovski (2004), SIAM J. Optim., 15, pp. 229–251) which analyzes EG as an approximation of the
“conceptual mirror prox.” In this paper, we highlight how gradients used in OGDA and EG try to
approximate the gradient of the proximal point method. We then exploit this interpretation to show
that both algorithms produce iterates that remain within a bounded set. We further show that the
primal-dual gap of the averaged iterates generated by both of these algorithms converge with a rate
of O(1/k). Our theoretical analysis is of interest as it provides the first convergence rate estimate for
OGDA in the general convex-concave setting. Moreover, it provides a simple convergence analysis
for the EG algorithm in terms of function value without using a compactness assumption.
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1. Introduction. Given a function f : Rm
⇥ Rn

! R, we consider finding a
saddle point of the problem

(1) min
x2Rm

max
y2Rn

f(x,y),

where a saddle point of problem (1) is defined as a pair (x⇤
,y⇤) 2 Rm

⇥ Rn that
satisfies

f(x⇤
,y)  f(x⇤

,y⇤)  f(x,y⇤)

for all x 2 Rm
,y 2 Rn. Throughout the paper, we assume that the function f(x,y)

is convex-concave, i.e., for any y 2 Rn, the function f(x,y) is a convex function of x
and for any x 2 Rm, the function f(x,y) is a concave function of y. This formulation
arises in several areas, including zero-sum games (Basar and Olsder, 1999), robust
optimization (Ben-Tal, El Ghaoui, and Nemirovski, 2009), robust control (Hast et al.,
2013), and more recently in machine learning in the context of generative adversarial
networks (GANs) (see Goodfellow et al. (2014) for an introduction to GANs and
Arjovsky, Chintala, and Bottou (2017) for the formulation of Wasserstein GANs).

Our goal in this paper is to analyze the convergence rate of some discrete-time
gradient based optimization algorithms for finding a saddle point of problem (1) in
the convex-concave case. In particular, we focus on extragradient (EG) and optimistic
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CONVEX-CONCAVE SADDLE POINT PROBLEMS 3231

gradient descent-ascent (OGDA) methods because of their widespread use for training
GANs (see Daskalakis et al. (2018); Liang and Stokes (2019)). The EG method is
a classical algorithm for solving saddle point problems introduced by Korpelevich
(1976). Its linear rate of convergence for smooth and strongly convex–strongly concave
functions1 f(x,y) and bilinear functions, i.e., f(x,y) = x>Ay (where A is a square,
full rank matrix), was established in Korpelevich (1976) as well as the variational
inequality literature (see Tseng (1995) and Facchinei and Pang (2007)). Its O(1/k)
convergence rate for the constrained convex-concave setting was first established by
Nemirovski (2004) under the assumption that the feasible set is convex and compact.2

Monteiro and Svaiter (2010) established a similar O(1/k) convergence rate for EG
without assuming compactness of the feasible set by using a new termination criterion
that relies on enlargement of the operator of the variational inequality reformulation of
the saddle point problem defined in Burachik, Iusem, and Svaiter (1997). OGDA was
introduced by Popov (1980), as a variant of the EG method, and has gained popularity
recently due to its performance in training GANs (see Daskalakis et al. (2018)). To
the best of our knowledge, iteration complexity of OGDA for the convex-concave case
has not been studied before.

In this paper, we provide a unified convergence analysis for establishing a sublin-
ear convergence rate of O(1/k) in terms of the function value di↵erence of the averaged
iterates and a saddle point for both OGDA and EG for convex-concave saddle point
problems. Our analysis holds for unconstrained problems and does not require bound-
edness of the feasible set, and it establishes rate results using the function value di↵er-
ences as used in Nemirovski (2004) (suitably redefined for an unconstrained feasible
set; see section 5). Therefore, we get convergence of the EG method in unconstrained
spaces without using the modified termination (error) criterion proposed in Monteiro
and Svaiter (2010). The key idea of our approach is to view both OGDA and EG
iterates as approximations of the iterates of the proximal point method that was first
introduced by Martinet (1970) and later studied by Rockafellar (1976). We would like
to add that the idea of interpreting EG as an approximation of the proximal point
method was first studied in Nemirovski (2004). He considers the conceptual mirror
prox, which is similar to the proximal point method, and shows that the mirror prox
algorithm (of which EG is a special case) provides a good implementable approxima-
tion to this method. Further, Monteiro and Svaiter (2010) use a similar interpretation
and propose the hybrid proximal EG method to establish the convergence of EG in
unbounded settings using a di↵erent convergence criteria. More recently, Mokhtari,
Ozdaglar, and Pattathil (2020) study both OGDA and EG as approximations of the
proximal point method and analyze these algorithms for bilinear and strongly convex–
strongly concave problems.

More specifically, we first consider a proximal point method with error and estab-
lish some key properties of its iterates. We then focus on OGDA as an approximation
of the proximal point method and use this connection to show that the iterates of
OGDA remain in a compact set. We incorporate this result to prove a sublinear
convergence rate of O(1/k) for the primal-dual gap of the averaged iterates gener-
ated by the OGDA update. We next consider EG where two gradient pairs are used
in each iteration, one to compute a midpoint and the other to find the new iterate

1Note that when we state that f(x,y) is strongly convex–strongly concave, it means that f(·,y)
is strongly convex for all y 2 Rn and f(x, ·) is strongly concave for all x 2 Rm.

2The result in (Nemirovski, 2004) shows a O(1/k) convergence rate for the mirror-prox algorithm
which specializes to the EG method for the Euclidean case.
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3232 A. MOKHTARI, A. E. OZDAGLAR, AND S. PATTATHIL

using the gradient of the midpoint. Our first step again is to show boundedness of
the iterates generated by EG. We then approximate the evolution of the midpoints
using a proximal point method and use this approximation to establish an O(1/k)
convergence rate for the function value of the averaged iterates generated by EG.
As the convergence results of EG have already been established in papers including
Nemirovski (2004) and Monteiro and Svaiter (2010), we relegate the proofs of lemmas
and theorems corresponding to EG to the appendix.

Related work. Several recent papers have studied the convergence rate of OGDA
and EG for the case when the objective function is bilinear or strongly convex–strongly
concave. Daskalakis et al. (2018) showed the convergence of the OGDA iterates to
a neighborhood of the solution when the objective function is bilinear. Liang and
Stokes (2019) used a dynamical systems approach to prove the linear convergence of
the OGDA method for the special case when f(x,y) = x>Ay and the matrix A is
square and full rank. They also presented a linear convergence rate of the vanilla gra-
dient descent ascent (GDA) method when the objective function f(x,y) is strongly
convex–strongly concave. Gidel et al. (2019) considered a variant of the EG method,
relating it to OGDA updates, and showed the linear convergence of the corresponding
EG iterates in the case where f(x,y) is strongly convex–strongly concave (though
without showing the convergence rate for the OGDA iterates). Optimistic gradient
methods have also been studied in the context of convex online learning Chiang et al.
(2012); Rakhlin and Sridharan (2013a,b).

Nedić and Ozdaglar (2009) analyzed the (sub)GDA algorithm for convex-concave
saddle point problems when the (sub)gradients are bounded over the constraint set,
showing a convergence rate of O(1/

p
k) in terms of the function value di↵erence of

the averaged iterates and a saddle point.
Chambolle and Pock (2011) focused on a particular case of the saddle point

problem where the coupling term in the objective function is bilinear, i.e., f(x,y) =
G(x) + x>Ky � H(y) with G and H convex functions. They proposed a proximal
point based algorithm which converges at a rate O(1/k) and further showed linear
convergence when the functions G andH are strongly convex. Chen, Lan, and Ouyang
(2014) proposed an accelerated variant of this algorithm when G is smooth and showed
an optimal rate of (LG

k2 + LK
k ), where LG and LK are the smoothness parameters of

G and the norm of the linear operator K, respectively. When the functions G and H

are strongly convex, primal-dual gradient-type methods converge linearly, as shown
in Chen and Rockafellar (1997); Bauschke et al. (2011). Further, Du and Hu (2019)
showed that GDA achieves a linear convergence rate in this linearly coupled setting
when G is convex and H is strongly convex.

For the case that f(x,y) is strongly concave with respect to y, but possibly
nonconvex with respect to x, Sanjabi et al. (2018) provided convergence to a first-
order stationary point using an algorithm that requires running multiple updates with
respect to y at each step.

Notation. Lowercase boldface v denotes a vector and uppercase boldface A
denotes a matrix. We use kvk to denote the Euclidean norm of vector v. Given a
multi-input function f(x,y), its gradient with respect to x and y at points (x0,y0)
are denoted by rxf(x0,y0) and ryf(x0,y0), respectively. We refer to the largest
and smallest eigenvalues of a matrix A by �max(A) and �min(A), respectively.

2. Preliminaries. In this section we present properties and notations used in
our results.
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CONVEX-CONCAVE SADDLE POINT PROBLEMS 3233

Definition 1. A function � : Rn
! R is L-smooth if it has L-Lipschitz contin-

uous gradients on Rn
, i.e., for any x, x̂ 2 Rn

, we have

||r�(x)�r�(x̂)||  L||x� x̂||.

Definition 2. A continuously di↵erentiable function � : Rn
! R is convex on

Rn
if for any x, x̂ 2 Rn

, we have

�(x̂) � �(x) +r�(x)T (x̂� x).

Further, �(x) is concave if ��(x) is convex.

Definition 3. The pair (x⇤
,y⇤) is a saddle point of a convex-concave function

f(x,y), if for any x 2 Rn
and y 2 Rm

, we have

f(x⇤
,y)  f(x⇤

,y⇤)  f(x,y⇤).

Throughout the paper, we will assume that the following conditions are satisfied.

Assumption 1. The function f(x,y) is continuously di↵erentiable in x and y.
Further, for any y 2 Rn, the function f(x,y) is a convex function of x and for any
x 2 Rm, the function f(x,y) is a concave function of y.

Assumption 2. The gradient rxf(x,y) is Lxx-Lipschitz with respect to x and
Lxy-Lipschitz with respect to y and the gradient ryf(x,y), is Lyy-Lipschitz with
respect to y and Lyx-Lipschitz with respect to x, i.e.,

krxf(x1,y)�rxf(x2,y)k  Lxxkx1 � x2k for all y,

krxf(x,y1)�rxf(x,y2)k  Lxyky1 � y2k for all x,

kryf(x,y1)�ryf(x,y2)|  Lyyky1 � y2k for all x,

kryf(x1,y)�ryf(x2,y)|  Lyxkx1 � x2k for all y.

We define L := 2⇥max{Lxx, Lxy, Lyx, Lyy}.3

Assumption 3. The solution set Z⇤ defined as

Z
⇤ := {[x;y] 2 Rn+m : (x,y) is a saddle point of problem (1)},(2)

is nonempty.

In the following sections, we present and analyze three di↵erent iterative algo-
rithms for solving the saddle point problem introduced in (1). The kth iterates of
these algorithms are denoted by (xk,yk). We denote the averaged (ergodic) iterates
by x̂k, ŷk, defined as follows:

x̂k =
1

k

kX

i=1

xi, ŷk =
1

k

kX

i=1

yi.(3)

In our convergence analysis, we use a variational inequality approach in which we
define the vector z = [x;y] 2 Rn+m as our decision variable and define the operator
F : Rm+n

! Rm+n as

F (z) = [rxf(x,y);�ryf(x,y)].(4)

3In this definition we need an additional factor of 2 because in the analysis we use L as the
Lipschitz continuity of the operator F (·) = [rxf(·);�ryf(·)].
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3234 A. MOKHTARI, A. E. OZDAGLAR, AND S. PATTATHIL

In the following lemma we characterize the properties of operator F in (4) when
the conditions in Assumptions 1 and 2 are satisfied. We would like to emphasize that
the following lemma is well known—see, e.g., Nemirovski (2004)—and we state it for
completeness.

Lemma 4. Let F (·) be defined as in (4). Suppose Assumptions 1 and 2 hold.

Then

(a) F is a monotone operator, i.e., for any z1, z2 2 Rm+n
, we have

hF (z1)� F (z2), z1 � z2i � 0;

(b) F is an L-Lipschitz continuous operator, i.e., for any z1, z2 2 Rm+n
, we have

kF (z1)� F (z2)k  Lkz1 � z2k;

(c) for all z⇤ 2 Z
⇤
, we have F (z⇤) = 0.

According to Lemma 4, when f is convex-concave and smooth, the operator F

defined in (4) is monotone and Lipschitz. The third result in Lemma 4 shows that
any saddle point of problem (1) satisfies the first-order optimality condition, i.e.,
for all (x⇤

,y⇤) 2 Z
⇤, we have

rxf(x
⇤
,y⇤) = 0, ryf(x

⇤
,y⇤).(5)

Before presenting our main results, we state the following well-known result (see,
for example, Nemirovski (2004)) which will be used later in the analysis of OGDA
and EG. We present the proof here for completeness.

Proposition 5. Recall the definition of the operator F (·) in (4) and the points

x̂k, ŷk in (3). Suppose Assumptions 1 and 3 hold. Then for any z = [x;y] 2 Rm+n
,

we have

f(x̂N ,y)� f(x, ŷN ) 
1

N

NX

k=1

F (zk)
>(zk � z).(6)

Proof. Using the definition of the operator F , we can write

1

N

NX

k=1

F (zk)
>(zk � z) =

1

N

NX

k=1

[rxf(xk,yk)
>(xk � x) +ryf(xk,yk)

>(y � yk)]

�
1

N

NX

k=1

[f(xk,yk)� f(x,yk) + f(xk,y)� f(xk,yk)]

=
1

N

NX

k=1

[f(xk,y)� f(x,yk)],(7)

where the inequality holds due to the fact that f is convex-concave. Using convexity
of f with respect to x and concavity of f with respect to y, we have

1

N

NX

k=1

f(xk,y) � f(x̂N ,y),
1

N

NX

k=1

f(x,yk)  f(x, ŷN ).(8)

Combining inequalities (7) and (8) yields

1

N

NX

k=1

F (zk)
>(zk � z) � f(x̂N ,y)� f(x, ŷN ),

completing the proof.
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3. Proximal point method with error. One of the classical algorithms stud-
ied for solving the saddle point problem in (1) is the proximal point method, in-
troduced in Martinet (1970) and studied in Rockafellar (1976). The proximal point
method generates the iterate {xk+1,yk+1} which is defined as the unique solution to
the saddle point problem4

min
x2Rm

max
y2Rn

⇢
f(x,y) +

1

2⌘
kx� xkk

2
�

1

2⌘
ky � ykk

2

�
.(9)

It can be verified that if the pair {xk+1,yk+1} is the solution of problem (9), then
xk+1 and yk+1 satisfy

xk+1 = argmin
x2Rm

⇢
f(x,yk+1) +

1

2⌘
kx� xkk

2

�
,(10)

yk+1 = argmax
y2Rn

⇢
f(xk+1,y)�

1

2⌘
ky � ykk

2

�
.(11)

Using the optimality conditions of the updates in (10) and (11) (which are necessary
and su�cient since the problems in (10) and (11) are strongly convex and strongly
concave, respectively), the update of the proximal point method for the saddle point
problem in (1) can be written as

xk+1 = xk � ⌘rxf(xk+1,yk+1),

yk+1 = yk + ⌘ryf(xk+1,yk+1).(12)

It is well known that the proximal point method achieves a sublinear rate of O(1/k)
when k is the number of iterations for convex minimization and for solving mono-
tone variational inequalities (see Güler (1991, 1992); Bruck (1977); Teboulle (1997);
Nemirovski (2004)). Note that Nemirovski (2004) in fact analyzed the conceptual
mirror prox (the proximal point method) as a building block to analyze the mirror-
prox algorithm. For completeness, we present the convergence rate of the proximal
point method for convex-concave saddle point problems in the following theorem (see
Appendix A for the proof).

Theorem 6. Suppose Assumption 1 holds. Let {xk,yk} be the iterates generated

by the updates in (12). Consider the definition of the averaged iterates x̂k, ŷk in (3).
Then for all k � 1, we have

|f(x̂k, ŷk)� f(x⇤
,y⇤)| 

kx0 � x⇤
k
2 + ky0 � y⇤

k
2

⌘k
.(13)

The result in Theorem 6 shows that by following the update of the proximal point
method the gap between the function values for the averaged iterates (x̂k, ŷk) and
the function value for a saddle point (x⇤

,y⇤) of the problem (1) approaches zero at a
sublinear rate of O(1/k).

Our goal is to provide similar convergence rate estimates for OGDA and EG using
the fact that these two methods can be interpreted as approximate versions of the
proximal point method. To do so, let us first rewrite the update of the proximal point
method given in (12) as

zk+1 = zk � ⌘F (zk+1),(14)

4Again {xk+1,yk+1} is unique since the objective function of problem (9) is strongly convex in
x and strongly concave in y.
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where z = [x;y] 2 Rm+n and the operator F is defined in (4). In the following
proposition, we establish a relation for the iterates of a proximal point method with
error. This relation will be used later for our analysis of OGDA and EG methods.

Proposition 7. Consider the sequence of iterates {zk} 2 Rn+m
generated by the

following update

zk+1 = zk � ⌘F (zk+1) + "k,(15)

where F : Rn+m
! Rn+m

is a monotone and Lipschitz continuous operator, "k 2

Rn+m
is an arbitrary vector, and ⌘ is a positive constant. Then for any z 2 Rn+m

and for each k � 1 we have

F (zk+1)
>(zk+1 � z)

=
1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2 +
1

⌘
"k

>(zk+1 � z).(16)

Proof. According to the update in (15), we can show that for any z 2 Rm+n we
have

kzk+1 � zk2 = kzk � zk2 � 2⌘(zk � z)>F (zk+1) + ⌘
2
kF (zk+1)k

2 + k"kk
2

+ 2"k
>(zk � z� ⌘F (zk+1)).(17)

We add and subtract the inner product 2⌘z>k+1F (zk+1) from the right-hand side and
regroup the terms to obtain

kzk+1 � zk2 = kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1)� 2⌘(xk � xk+1)
>
F (zk+1)

+ ⌘
2
kF (zk+1)k

2 + k"kk
2 + 2"k

T (zk � z� ⌘F (zk+1)).(18)

Replacing F (zk+1) with (1/⌘)(�zk+1 + zk + "k), we obtain

kzk+1 � zk2

= kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1) + 2(zk � zk+1)
>(zk+1 � zk � "k)

+ kzk+1 � zk � "kk
2 + k"kk

2 + 2"k
T (zk+1 � z� "k)

= kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1)� kzk+1 � zkk
2 + 2"k

T (zk+1 � z).(19)

On rearranging the terms, we obtain the following inequality:

F (zk+1)
>(zk+1 � z)

=
1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2 +
1

⌘
"k

T (zk+1 � z),(20)

and the proof is complete.

4. Optimistic gradient descent ascent. In this section, we focus on ana-
lyzing the performance of OGDA for finding a saddle point of a general smooth
convex-concave function. It has been shown that the OGDA method achieves the
same iteration complexity as the proximal point method for both strongly convex–
strongly concave and bilinear problems; see Liang and Stokes (2019), Gidel et al.
(2019), Mokhtari, Ozdaglar, and Pattathil (2020). However, its iteration complexity
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CONVEX-CONCAVE SADDLE POINT PROBLEMS 3237

for a general smooth convex-concave case has not been established to the best of our
knowledge. In this section, we show that the function value of the averaged iterate
generated by the OGDA method converges to the function value at a saddle point at
a rate of O(1/k), which matches the convergence rate of the proximal point method
shown in Theorem 6.

Given a step size ⌘ > 0, the OGDA method updates the iterates xk and yk for
each k � 0 as

xk+1 = xk � 2⌘rxf (xk,yk) + ⌘rxf (xk�1,yk�1) ,

yk+1 = yk + 2⌘ryf (xk,yk)� ⌘ryf (xk�1,yk�1)(21)

with the initial conditions x0 = x�1 and y0 = y�1. The main di↵erence between the
updates of OGDA in (21) and the GDA method is in the additional “momentum”
terms �⌘(rxf (xk,yk)�rxf (xk�1,yk�1)) and ⌘(ryf (xk,yk)�ryf (xk�1,yk�1)).
This additional term makes the update of OGDA a better approximation to the
update of the proximal point method compared to the update of the GDA; for more
details we refer readers to Proposition 1 in Mokhtari, Ozdaglar, and Pattathil (2020).

To establish the convergence rate of OGDA for convex-concave problems, we
first illustrate the connection between the updates of the proximal point method and
OGDA. Note that using the definitions of the vector z = [x;y] 2 Rn+m and the
operator F (z) = [rxf(x,y);�ryf(x,y)] 2 Rn+m, we can rewrite the update of the
OGDA algorithm at iteration k as

zk+1 = zk � 2⌘F (zk) + ⌘F (zk�1).(22)

Considering this expression, we can also write the update of OGDA as an approxi-
mation of the proximal point update, i.e.,

zk+1 = zk � ⌘F (zk+1) + "k,(23)

where the error vector "k is given by

"k = ⌘[(F (zk+1)� F (zk))� (F (zk)� F (zk�1))].(24)

To derive the convergence rate of OGDA for the unconstrained problem in (1),
we first use the result in Proposition 7 to derive a result for the specific case of OGDA
updates. We then show that the iterates generated by the OGDA method remain in
a bounded set. This is done in the following lemma (note that boundedness of OGDA
iterates can be deduced from Popov (1980), whereas a result similar to Lemma 8(b)
was shown in a recent independent paper by Malitsky and Tam (2018)).

Lemma 8. Let {zk} be the iterates generated by the OGDA method introduced

in (22) with the initial conditions x0 = x�1 and y0 = y�1 (i.e., z0 = z�1). If

Assumptions 1, 2, and 3 hold and the step size ⌘ satisfies the condition 0 < ⌘ 
1
2L ,

then

(a) the iterates {zk} satisfy the following relation:

F (zk+1)
>(zk+1 � z)


1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

L

2
kzk+1 � zkk

2 +
L

2
kzk � zk�1k

2

+ (F (zk+1)� F (zk))
>(zk+1 � z)� (F (zk)� F (zk�1))

>(zk � z);(25)
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(b) the iterates {zk} stay within the compact set D defined as

(26) D := {(x,y) | kx� x⇤
k
2 + ky � y⇤

k
2
 2

�
kx0 � x⇤

k
2 + ky0 � y⇤

k
2
�
},

where (x⇤
,y⇤) = z⇤ 2 Z

⇤
is a saddle point of the problem defined in (1).

Proof. Since OGDA iterates satisfy (23) with the error vector "k given in (24),
using Proposition 7 with this error vector "k leads to

F (zk+1)
>(zk+1 � z)

=
1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2

+ (F (zk+1)� F (zk))
>(zk+1 � z)� (F (zk)� F (zk�1))

>(zk+1 � z).(27)

We add and subtract the inner product (F (zk)�F (zk�1))>(zk�z) to the right-hand
side of the preceding relation to obtain

F (zk+1)
>(zk+1 � z)

=
1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2

+ (F (zk+1)� F (zk))
>(zk+1 � z)� (F (zk)� F (zk�1))

>(zk � z)

+ (F (zk)� F (zk�1))
>(zk � zk+1).(28)

Note that (F (zk)� F (zk�1))>(zk � zk+1) can be upper bounded by

(F (zk)� F (zk�1))
>(zk � zk+1)  kF (zk)� F (zk�1)kkzk � zk+1k

 Lkzk � zk�1kkzk � zk+1k


L

2
kzk � zk�1k

2 +
L

2
kzk � zk+1k

2
,(29)

where the second inequality holds due to Lipschitz continuity of the operator F

(Lemma 4(b)) and the last inequality holds due to Young’s inequality.5 Replacing
(F (zk)� F (zk�1))>(zk � zk+1) in (28) by its upper bound in (29) yields

F (zk+1)
>(zk+1 � z)


1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2

+ (F (zk+1)� F (zk))
>(zk+1 � z)� (F (zk)� F (zk�1))

>(zk � z)

+
L

2
kzk � zk�1k

2 +
L

2
kzk+1 � zkk

2


1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

L

2
kzk+1 � zkk

2 +
L

2
kzk � zk�1k

2

+ (F (zk+1)� F (zk))
>(zk+1 � z)� (F (zk)� F (zk�1))

>(zk � z),(30)

where the second inequality follows as ⌘  1/2L and therefore �
1
2⌘kzk+1 � zkk2 

�Lkzk+1� zkk2. This completes the proof of part (a) of the lemma. Now, taking the

5We use the following form of Young’s inequality throughout the paper: a
>
b 

kak2
2

+ kbk2
2

.
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sum of the preceding relation from k = 0, . . . , N � 1, we obtain

N�1X

k=0

F (zk+1)
>(zk+1 � z)


1

2⌘
kz0 � zk2 �

1

2⌘
kzN � zk2 �

L

2
kzN � zN�1k

2 +
L

2
kz0 � z�1k

2

+ (F (zN )� F (zN�1))
>(zN � z)� (F (z0)� F (z�1))

>(z0 � z).(31)

Now set z = z⇤, where z⇤ 2 Z
⇤, to obtain

N�1X

k=0

F (zk+1)
>(zk+1 � z⇤)


1

2⌘
kz0 � z⇤k2 �

1

2⌘
kzN � z⇤k2 �

L

2
kzN � zN�1k

2 +
L

2
kz0 � z�1k

2

+ (F (zN )� F (zN�1))
>(zN � z⇤)� (F (z0)� F (z�1))

>(z0 � z⇤).(32)

Note that each term of the summand in the sum in the left is nonnegative due to the
monotonicity of F and therefore the sum is also nonnegative. Further, we know that
z0 = z�1. Using these observations we can write

0 
1

2⌘
kz0 � z⇤k2 �

1

2⌘
kzN � z⇤k2 �

L

2
kzN � zN�1k

2

+ (F (zN )� F (zN�1))
>(zN � z⇤).(33)

Using Lipschitz continuity of the operator F (·) (Lemma 4(b)) and Young’s inequality
in the preceding relation, we have

0 
1

2⌘
kz0 � z⇤k2 �

1

2⌘
kzN � z⇤k2 �

L

2
kzN � zN�1k

2

+ LkzN � zN�1kkzN � z⇤k


1

2⌘
kz0 � z⇤k2 �

1

2⌘
kzN � z⇤k2 �

L

2
kzN � zN�1k

2

+
L

2
kzN � zN�1k

2 +
L

2
kzN � z⇤k2


1

2⌘
kz0 � z⇤k2 �

1

2⌘
kzN � z⇤k2 +

L

2
kzN � z⇤k2.(34)

Regrouping the terms gives us

kzN � z⇤k2 
1

(1� ⌘L)
kz0 � z⇤k2.(35)

Using the condition ⌘  1/2L, it follows that for any iterate N we have

kzN � z⇤k2  2kz0 � z⇤k2,(36)

and the claim in part (b) follows.

According to Lemma 8, the sequence of iterates {xk,yk} generated by the OGDA
method stays within a closed and bounded convex set. We use this result to prove a
sublinear convergence rate of O(1/k) for the function value of the averaged iterates
generated by OGDA to the function value at a saddle point, for smooth and convex-
concave functions in the following theorem.
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3240 A. MOKHTARI, A. E. OZDAGLAR, AND S. PATTATHIL

Theorem 9. Suppose Assumptions 1, 2, and 3 hold. Let {xk,yk} be the iterates

generated by the OGDA updates in (21). Let the initial conditions satisfy x0 = x�1

and y0 = y�1. Consider the definition of the averaged iterates x̂N , ŷN in (3) and the

compact convex set D in (26). If the step size ⌘ satisfies the condition 0 < ⌘  1/2L,
then for all N � 1, we have


max

y:(x̂N ,y)2D
f(x̂N ,y)� f

?

�
+


f
?
� min

x:(x,ŷN )2D
f(x, ŷN )

�


D(8L+ 1
2⌘ )

N
,(37)

where f
? = f(x⇤

,y⇤) and D = kx0 � x⇤
k
2 + ky0 � y⇤

k
2
.

Proof. From Lemma 8(a), we have that the iterates generated by the OGDA
method satisfy (25). On taking the sum of this relation from k = 0, . . . , N � 1, we
obtain for any z

N�1X

k=0

F (zk+1)
>(zk+1 � z)


1

2⌘
kz0 � zk2 �

1

2⌘
kzN � zk2 �

L

2
kzN � zN�1k

2 +
L

2
kz0 � z�1k

2

+ (F (zN )� F (zN�1))
>(zN � z)� (F (z0)� F (z�1))

>(z0 � z).(38)

Note that for any z1, z2 2 D, we have

kz1 � z2k
2
 2kz1 � z⇤k2 + 2kz2 � z⇤k2

 4kz0 � z⇤k2 + 4kz0 � z⇤k2

 8D,(39)

where we have used the fact that kz � z⇤k2  2kz0 � z⇤k2 for all z 2 D along with
the fact that for all a,b 2 Rd

, ka+bk2  2kak2 +2kbk2. As z�1 = z0 and ⌘  1/2L,
for any z 2 D we have

1

N

N�1X

k=0

F (zk+1)
>(zk+1 � z) 

1
2⌘kz0 � zk2 + (F (zN )� F (zN�1))>(zN � z)

N


D(8L+ 1

2⌘ )

N
.(40)

This inequality follows since

(F (zN )� F (zN�1))
>(zN � z)  kF (zN )� F (zN�1)kkzN � zk

 LkzN � zN�1kkzN � zk(41)

and for any x,y 2 D, we have

kx� yk  kx� z⇤k+ ky � z⇤k

 2
p

2D.(42)

Therefore, we have

(F (zN )� F (zN�1))
>(zN � z)  8LD(43)
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which immediately gives us inequality (40). Combining relation (40) with Proposi-
tion 5 we have that for all x,y 2 D

f(x̂N ,y)� f(x, ŷN ) 
D(8L+ 1

2⌘ )

N
(44)

which gives us the following convergence rate estimate:


max
y:(x̂N ,y)2D

f(x̂N ,y)� f
?

�
+


f
?
� min

x:(x,ŷN )2D
f(x, ŷN )

�


D(8L+ 1
2⌘ )

N
,

where f
? = f(x⇤

,y⇤).

Note that convergence in Theorem 9 is shown in terms of the primal-dual gap
maxy:(x̂N ,y)2D f(x̂N ,y)�minx:(x,ŷN )2D f(x, ŷN ) which is a common measure to cap-
ture closeness to the solution in a convex-concave setting (see Nemirovski (2004)).
Indeed, the duality gap is zero if and only if (x̂N , ŷN ) is a saddle point of the prob-
lem. The primal-dual gap also has the following game theoretic interpretation. If
player x is playing x̂N , then maxy:(x̂N ,y)2D f(x̂N ,y) quantifies how much player y
can gain by playing an action in the set D. Similarly, if player y is playing ŷN , then
�minx:(x,ŷN )2D f(x, ŷN ) quantifies how much player x can gain by playing an action
in D. Therefore, the quantity maxy:(x̂N ,y)2D f(x̂N ,y) � minx:(x,ŷN )2D f(x, ŷN ) is a
measure of the sum of how much each player can gain if they unilaterally deviate
from the strategy (x̂N , ŷN ). This goes to zero at the Nash equilibrium (saddle point),
where no player can gain by unilaterally deviating from the equilibrium strategy.

Also, note that the result in Theorem 9 also implies that |f(x̂N , ŷN ) � f
⇤
| 

9LD/N as we show in the following corollary.

Corollary 10. Suppose Assumptions 1, 2, and 3 hold. Let {xk,yk} be the iter-

ates generated by the OGDA updates in (21). Consider the definition of the averaged

iterates x̂N , ŷN in (3). If the step size ⌘ satisfies the condition 0 < ⌘  1/2L, then
for all N � 1, we have

|f(x̂N , ŷN )� f
?
| 

D(8L+ 1
2⌘ )

N
,

where f
? = f(x⇤

,y⇤).

Proof. Note that [maxy:(x̂N ,y)2D f(x̂N ,y)�f
?] and [f?

�minx:(x,ŷN )2D f(x, ŷN )]
are both nonnegative. To verify note that

max
y:(x̂N ,y)2D

f(x̂N ,y) � f(x̂N ,y⇤) � f(x⇤
,y⇤)

and
min

x:(x,ŷN )2D
f(x, ŷN )  f(x⇤

, ŷN )  f(x⇤
,y⇤)

(since (x⇤
,y⇤) 2 D). Further, note that (x̂N , ŷN ) belongs to the set D. Hence, it

yields

f(x̂N , ŷN )� f
?
 max

y:(x̂N ,y)2D
f(x̂N ,y)� f

?


D(8L+ 1
2⌘ )

N
.

Also, we can show that

f
?
� f(x̂N , ŷN )  f

?
� min

x:(x,ŷN )2D
f(x, ŷN ) 

D(8L+ 1
2⌘ )

N
.

Therefore, |f(x̂N , ŷN )� f
?
| 

D(8L+ 1
2⌘ )

N .
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The result in Corollary 10 shows that the function value of the averaged iterates
generated by OGDA converges to the function value at a saddle point of problem
(1) at a sublinear rate of O(1/k) when the function is smooth and convex-concave.
To the best of our knowledge, this is the first nonasymptotic complexity bound for
OGDA for the convex-concave setting. Moreover, note that without computing any
EG evaluation, i.e., computing only one gradient per iteration with respect to x and
y, OGDA recovers the convergence rate of proximal point method.

5. EG method. In this section, we consider finding a saddle point of a general
smooth convex-concave function using the EG method. Similar to our analysis of the
OGDA method, we show that by interpreting the EG method as an approximation
of the proximal point method it is possible to establish a convergence rate of O(1/k)
through a simple analysis.

Consider the update of EG in which we first compute a set of midpoint iterates
{xk+ 1

2
,yk+ 1

2
} using the gradients with respect to x and y at the current iterate

xk+ 1
2
= xk � ⌘rxf(xk,yk),

yk+ 1
2
= yk + ⌘ryf(xk,yk).(45)

Then, we compute the next iterates of the EG method {xk+1,yk+1} using the gradi-
ents at the midpoints {xk+ 1

2
,yk+ 1

2
}, i.e.,

xk+1 = xk � ⌘rxf(xk+ 1
2
,yk+ 1

2
),

yk+1 = yk + ⌘ryf(xk+ 1
2
,yk+ 1

2
).(46)

We aim to show that EG, similarly to OGDA, can be analyzed for convex-concave
problems by considering it as an approximation of the proximal point. To do so, let
us use the notation z = [x;y] 2 Rn+m and F (z) = [rxf(x,y);�ryf(x,y)] 2 Rn+m

to write the update of EG as

zk+ 1
2
= zk � ⌘F (zk),

zk+1 = zk � ⌘F (zk+ 1
2
).(47)

To better highlight the connection between proximal point and EG, let us focus on
the expression for the update of the midpoint iterates in EG. Considering the updates
in (47), we have

zk+ 1
2
= zk � ⌘F (zk),

= zk�1 � ⌘F (zk� 1
2
)� ⌘F (zk)

= zk� 1
2
+ ⌘F (zk�1)� ⌘F (zk� 1

2
)� ⌘F (zk),

where the second equality follows by replacing zk by its update zk�1 � ⌘F (zk� 1
2
),

and the second equality follows by considering the update zk� 1
2
= zk�1 � ⌘F (zk�1).

Therefore, rearranging this equation, we can rewrite the updates as

(48) zk+ 1
2
= zk� 1

2
� ⌘F (zk� 1

2
)� ⌘(F (zk)� F (zk�1)).

One can consider the expression F (zk)�F (zk�1) as an approximation of the variation
F (zk+ 1

2
) � F (zk� 1

2
). To be more precise, if we assume that the variations F (zk) �

D
ow

nl
oa

de
d 

07
/2

9/
22

 to
 5

8.
25

0.
17

4.
73

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVEX-CONCAVE SADDLE POINT PROBLEMS 3243

F (zk�1) and F (zk+ 1
2
)� F (zk� 1

2
) are close to each other, i.e., F (zk+ 1

2
)� F (zk� 1

2
) ⇡

F (zk)�F (zk�1), then the update in (48) behaves like the proximal point update with
respect to the midpoint iterates, i.e.,

(49) zk+ 1
2
= zk� 1

2
� ⌘F (zk+ 1

2
).

We first derive a result similar to Proposition 7 for the specific case of EG iterates
(Lemma 11(a)). We then show the boundedness of the EG iterates in Lemma 11(b)
(note that the boundedness of the EG updates can also be deduced from the conver-
gence results of Korpelevich (1976) and Monteiro and Svaiter (2010)).

Lemma 11. Let {zk}, {zk+ 1
2
} be the iterates generated by the EG method intro-

duced in (47). If Assumptions 1, 2, and 3 hold and the step size ⌘ satisfies the

condition 0 < ⌘ < 1/L, then
(a) the iterates {zk}, {zk+ 1

2
} satisfy the following relation:

F (zk+ 1
2
)>(zk+ 1

2
� z)


1

2⌘
kzk� 1

2
� zk2 �

1

2⌘
kzk+ 1

2
� zk2 +

L

2
kzk� 1

2
� zk�1k

2

+ (F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z);(50)

(b) the iterates {zk}, {zk+ 1
2
} stay within the compact set D defined as

(51)

D := {(x,y) | kx� x⇤
k
2 + ky� y⇤

k
2


✓
2 +

2

1� ⌘2L2

◆
(kx0 � x⇤

k
2 + ky0 � y⇤

k
2)},

where (x⇤
,y⇤) = z⇤ 2 Z

⇤
is a saddle point of the problem defined in (1). Moreover,

the sum
P1

k=0 kzk+ 1
2
� zkk2 is bounded above by

1X

k=0

kzk+ 1
2
� zkk

2


kz0 � z⇤k2

1� ⌘2L2
.(52)

Proof. See Appendix B for the proof.

The result in Lemma 11 shows that the iterates generated by the update of EG
belong to a bounded and closed set. Now we use this result to show that the function
value of the averaged iterates converges at a sublinear rate of O(1/k) to the function
value at a saddle point for the EG method in the following theorem.

Theorem 12. Suppose Assumptions 1, 2, and 3 hold. Let {xk+1/2,yk+1/2} be the

iterates generated by the EG updates in (45)–(46). Let the initial conditions satisfy

x0 = x�1/2 and y0 = y�1/2 Consider the definition of the averaged iterates x̂N , ŷN

in (3) and the compact convex set D in (51). If the step size ⌘ satisfies the condition

⌘ = �
L for any � 2 (0, 1), then for all N � 1, we have


max

y:(x̂N ,y)2D
f(x̂N ,y)� f

?

�
+


f
?
� min

x:(x,ŷN )2D
f(x, ŷN )

�


DL

⇣
16 + 33

2(1��2)

⌘

N
,

(53)

where f
? = f(x⇤

,y⇤) and D = kx0 � x⇤
k
2 + ky0 � y⇤

k
2
.

Proof. See Appendix C for the proof.
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Fig. 1. Number of Gradient computations required (x-axis) to reach any error level (y-axis)
for both OGDA and EG for the problem in (54).

Now, similarly to Corollary 10, we have the following.

Corollary 13. Suppose Assumptions 1, 2, and 3 hold. Let {xk+1/2,yk+1/2} be

the iterates generated by the EG updates in (45)–(46). Let the initial conditions satisfy
x0 = x�1/2 and y0 = y�1/2. Consider the definition of the averaged iterates x̂N , ŷN

in (3). If the step size ⌘ satisfies the condition ⌘ = �
L for any � 2 (0, 1), then for all

N � 1, we have

|f(x̂N , ŷN )� f
?
| 

DL

⇣
16 + 33

2(1��2)

⌘

N
,

where f
? = f(x⇤

,y⇤).

6. Discussion and numerical experiments. The main message of this work
is that the OGDA algorithm obtains the same convergence rate of O(1/k), the best
achievable rate (see Nemirovski (2004)), also achieved by EG. However, the advantage
of OGDA is that we need only one gradient computation at each step, as opposed to
two gradient computations needed in EG. This shows the computational advantage
that OGDA has over EG.

We compare the performance of OGDA and EG in terms of gradient computa-
tions, on the bilinear minimax games considered in Nemirovski (2004), without any
constraint. In particular, we consider the following minimax problem:

min
x2Rn

max
y2Rn

x>By,(54)

where B 2 Rn⇥n is a sparse random matrix generated as follows. Each element is
nonzero independently with probability p. If an element is chosen to be nonzero, it
is chosen uniformly from [�1, 1]. We compare the number of gradient computations
required to reach a desired accuracy level for this problem in Figure 1. As we observe,
both EG and OGDA converge to the saddle point of the bilinear problem at a sublinear
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rate of O(1/k), but OGDA slightly outperforms EG in terms of the number of gradient
evaluations. Once again, this is due to the fact that both descent and ascent updates
of OGDA require only one gradient computation each, while EG requires two gradient
computations for both updates at each iteration.

Note that the Lipschitz constants for the considered problem can be estimated
from data using standard line search techniques. In particular, Beck and Teboulle
(2009) discuss a backward tracking algorithm (ISTA with backtracking) which can be
used to estimate the Lipschitz constants, in particular Lxx and Lyy. Several variants of
this algorithm, including the Lipschitz linesearch algorithm (Algorithm 2) in Schmidt
et al. (2015), can also be used to estimate the Lipschitz constants Lxx and Lyy. For the
specific case of saddle point problems, a recent paper (Hamedani and Aybat, 2018)
proposes a line search algorithm, to estimate the Lipschitz constant Lxx, Lxy, Lyx,
and Lyy. They propose an algorithm—accelerated primal dual with backtracking
(Algorithm 2.3)—which uses a backtracking procedure, similar to Malitsky and Pock
(2018), to locally estimate the Lipschitz constants of the problem. Also, regarding the
initial error, we would like to highlight that in the analysis of convex minimization
problems or convex-concave saddle point problems, we often have a term of the form
kx0�x⇤

k
2 in the upper bound (for instance, see Nesterov (2013); Monteiro and Svaiter

(2010)) which shows the e↵ect of initial error. This parameter is hard to estimate in
general but can be upper bounded in specific cases. For example, if we are looking
at mixed strategies in zero-sum games, we know that we are looking for a solution
that lies in the probability simplex, so we can bound the initial error simply by the
diameter of the simplex. In general, if we know that our iterates of the algorithm
are going to lie in some compact set, we can upper bound the initial distance to the
solution simply by the diameter of the compact set.

7. Conclusions. In this paper, we established convergence guarantees of the
OGDA and EG methods for unconstrained, smooth, and convex-concave saddle point
problems. In particular, we showed a sublinear convergence rate of O(1/k) in terms
of function value error for both OGDA and EG by interpreting them as approximate
variants of the proximal point method. This result leads to the first theoretical guar-
antee for OGDA in convex-concave saddle point problems. Moreover, it provides a
simple and short proof for the convergence rate of EG in convex-concave saddle point
problems when we measure the optimality gap in terms of function value.

Appendix A. Proof of Theorem 6. The update of the proximal point
method can be written as:

zk+1 = zk � ⌘F (zk+1).(55)

According to this update we can show that

kzk+1 � zk2 = kzk � zk2 � 2⌘(zk � z)>F (zk+1) + ⌘
2
kF (zk+1)k

2
.(56)

Now add and subtract the inner product 2⌘z>k+1F (zk+1) to/from the right-hand side
and regroup the terms to obtain

kzk+1 � zk2 = kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1)� 2⌘(xk � xk+1)
>
F (zk+1)

+ ⌘
2
kF (zk+1)k

2
.(57)
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Replace F (zk+1) with (1/⌘)(�zk+1 + zk) to obtain

kzk+1 � zk2

= kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1) + 2(zk � zk+1)
>(zk+1 � zk)

+ kzk+1 � zkk
2

= kzk � zk2 � 2⌘(zk+1 � z)>F (zk+1)� kzk+1 � zkk
2
.(58)

On rearranging the terms, we get the following,

F (zk+1)
>(zk+1 � z) =

1

2⌘
kzk � zk2 �

1

2⌘
kzk+1 � zk2 �

1

2⌘
kzk+1 � zkk

2
.(59)

Now, on substituting z = z⇤, and noting that F (zk+1)>(zk+1 � z⇤) � 0, we have

kzk+1 � z⇤k2  kzk � z⇤k2 � kzk+1 � zkk
2(60)

and the proof of boundedness is complete.
On adding (59) from k = 0, . . . , N � 1 and dividing by N , we get

1

N

NX

k=1

F (zk)
>(zk � z) 

kz0 � zk2

⌘N
.(61)

Now, using Proposition 5 we can write

|f(x̂N , ŷN )� f
?
| 

kx0 � xk2 + ky0 � yk2

⌘N
,(62)

and the proof is complete.

Appendix B. Proof of Lemma 11.
(a) Considering the updates in (48) and (49) we can write the update of mid-

points in EG as

(63) zk+ 1
2
= zk� 1

2
� ⌘F (zk+ 1

2
) + "k,

where

(64) "k = ⌘

h
(F (zk+ 1

2
)� F (zk� 1

2
))� (F (zk)� F (zk�1))

i
.

Therefore, we can simplify the last term in (16) of Proposition 7 as follows:

1

⌘
"k

>(zk+ 1
2
� z)

=
1

⌘
⇥ [(⌘F (zk+ 1

2
)� ⌘F (zk))� (⌘F (zk� 1

2
)� ⌘F (zk�1))]

>(zk+ 1
2
� z)

= (F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z)

� (F (zk� 1
2
)� F (zk�1))

>(zk+ 1
2
� zk� 1

2
).(65)
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Using the Lipschitz continuity of the operator F (Lemma 4(b)) and Young’s inequality,
we have

1

⌘
"k

>(zk+ 1
2
� z)

 F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z)

+ Lkzk� 1
2
� zk�1kkzk+ 1

2
� zk� 1

2
k

 F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z)

+
L

2
kzk� 1

2
� zk�1k

2 +
L

2
kzk+ 1

2
� zk� 1

2
k
2
.(66)

Substituting the upper bound in (66) into (16) of Proposition 7, implies that

F (zk+ 1
2
)>(zk+ 1

2
� z)


1

2⌘
kzk� 1

2
� zk2 �

1

2⌘
kzk+ 1

2
� zk2 �

1

2⌘
kzk+ 1

2
� zk� 1

2
k
2

+ (F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z)

+
L

2
kzk� 1

2
� zk�1k

2 +
L

2
kzk+ 1

2
� zk� 1

2
k
2
.(67)

Since ⌘ < 1/L, we have �
1
2⌘kzk+ 1

2
� zk� 1

2
k
2 + L

2 kzk+ 1
2
� zk� 1

2
k
2
 0 and therefore

F (zk+ 1
2
)>(zk+ 1

2
� z)


1

2⌘
kzk� 1

2
� zk2 �

1

2⌘
kzk+ 1

2
� zk2 +

L

2
kzk� 1

2
� zk�1k

2

+ (F (zk+ 1
2
)� F (zk))

>(zk+ 1
2
� z)� (F (zk� 1

2
)� F (zk�1))

>(zk� 1
2
� z),(68)

which completes the proof of part (a).
(b) Based on the update of EG in (47), we can write

kzk � zk2

= kzk � zk+1 + zk+1 � zk2

= kzk+1 � zk2 + 2(z� zk+1)
>(zk+1 � zk) + kzk+1 � zkk

2

= kzk+1 � zk2 + 2(z� zk+ 1
2
)>(zk+1 � zk)

+ 2(zk+ 1
2
� zk+1)

>(zk+1 � zk) + kzk+1 � zkk
2

= kzk+1 � zk2 + 2(z� zk+ 1
2
)>(zk+1 � zk) + kzk+ 1

2
� zkk

2
� kzk+ 1

2
� zk+1k

2
.(69)

Now we proceed to bound the di↵erence kzk+ 1
2
� zk+1k

2. Using the fact that the

operator F is L-Lipschitz (Lemma 4(b)), we have

kzk+ 1
2
� zk+1k

2 = ⌘
2
kF (zk+ 1

2
� F (zk)k

2

 ⌘
2
L
2
kzk+ 1

2
� zkk

2
.(70)

Substituting this upper bound back into (69) and taking z = z⇤ implies

kzk � z⇤k2

� kzk+1 � z⇤k2 + 2(z⇤ � zk+ 1
2
)>(zk+1 � zk) + (1� ⌘

2
L
2)kzk+ 1

2
� zkk

2
.(71)

D
ow

nl
oa

de
d 

07
/2

9/
22

 to
 5

8.
25

0.
17

4.
73

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3248 A. MOKHTARI, A. E. OZDAGLAR, AND S. PATTATHIL

Further, since the operator F is monotone, we have

(z⇤ � zk+ 1
2
)>(zk+1 � zk) = ⌘(F (zk+ 1

2
))>(zk+ 1

2
� z⇤)

� ⌘(F (zk+ 1
2
)� F (z⇤))>(zk+ 1

2
� z⇤)

� 0,(72)

where in the first inequality we used the fact that F (z⇤) = 0 (Lemma 4(c)), and
the last inequality holds due to monotonicity of F (Lemma 4(a)). Therefore, we can
replace the inner product 2(z⇤ � zk+ 1

2
)>(zk+1 � zk) in (71) by its lower bound 0 to

obtain

kzk � z⇤k2 � kzk+1 � z⇤k2 + (1� ⌘
2
L
2)kzk+ 1

2
� zkk

2
.(73)

The result in (73) shows that the sequence kzk � z⇤k2 is nonincreasing. Therefore,
for any iterate k, it holds that

kzk � z⇤k2  kz0 � z⇤k2.(74)

Now, for all k � 0, we have

kzk+ 1
2
� z⇤k2  2kzk � z⇤k2 + 2kzk+ 1

2
� zkk

2



✓
2 +

2

1� ⌘2L2

◆
kzk � z⇤k2



✓
2 +

2

1� ⌘2L2

◆
kz0 � z⇤k2,(75)

where the first inequality follows from the fact that for all a,b 2 Rd
, ka + bk2 

2kak2+2kbk2, the second inequality follows from (73), and the third inequality follows
from (74). Therefore from (74) and (75), since 0 < 1 � ⌘

2
L
2
< 1, we see that the

iterates {zk}, {zk+ 1
2
} belong to the compact set D defined in (51).

Now by summing both sides of (73) for k = 0, . . . ,1, we obtain

(1� ⌘
2
L
2)

1X

k=0

kzk+ 1
2
� zkk

2
 kz0 � z⇤k2.(76)

Therefore, by regrouping the terms we obtain

1X

k=0

kzk+ 1
2
� zkk

2


kz0 � z⇤k2

1� ⌘2L2
,(77)

and the claim in (52) follows.

Appendix C. Proof of Theorem 12. Using (50) of Lemma 11(a), summing
it from k = 0, . . . , N � 1 and dividing by N , we obtain

1

N

N�1X

k=0

F (zk+ 1
2
)>(zk+ 1

2
� z)



1
2⌘kz0�zk2 + (F (zN� 1

2
)�F (zN�1))>(zN� 1

2
�z)

N
+

L

2N

N�1X

k=0

kzk� 1
2
�zk�1k

2
.(78)
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The bound in (52) from Lemma 11(b) yields

1

N

N�1X

k=0

F (zk+ 1
2
)>(zk+ 1

2
� z)


Lkz0 � zk2 + (F (zN� 1

2
)� F (zN�1))>(zN� 1

2
� z)

N
+

Lkz0 � z⇤k2

2(1� ⌘2L2)N



Lkz0 � zk2 + LkzN� 1
2
� zN�1kkzN� 1

2
� zk+ L

2(1��2)kz0 � z⇤k2

N
,(79)

where in the last inequality we use the Lipschitz continuity of the operator F (Lemma
4(b)) and the fact that ⌘ = �

L . Note that for any z1, z2 2 D, we have

kz1 � z2k  kz1 � z⇤k+ kz2 � z⇤k



s✓
2 +

2

1� ⌘2L2

◆
kz0 � z⇤k+

s✓
2 +

2

1� ⌘2L2

◆
kz0 � z⇤k

 2

s

D

✓
2 +

2

1� �2

◆
.(80)

Therefore, for any point z in the set D, we can substitute the preceding relation in
(79) to get

1

N

N�1X

k=0

F (zk+ 1
2
)>(zk+ 1

2
� z) 

DL

⇣
16 + 33

2(1��2)

⌘

N
.(81)

Now, using Proposition 5 we have that for all x,y 2 D,

f(x̂N ,y)� f(x, ŷN ) 
DL

⇣
16 + 33

2(1��2)

⌘

N
,(82)

where x̂N = 1
N

PN�1
k=0 xk+1/2 and ŷN = 1

N

PN�1
k=0 yk+1/2 which gives us the following

convergence result:


max

y:(x̂N ,y)2D
f(x̂N ,y)� f

?

�
+


f
?
� min

x:(x,ŷN )2D
f(x, ŷN )

�


DL

⇣
16 + 33

2(1��2)

⌘

N
,

where f
? = f(x⇤

,y⇤).
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