

Outline

Motivation

Background

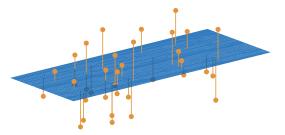
Algorithms

Robustness in Learning (I)

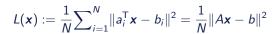
Standard training: Minimize empirical loss by selecting parameters *x*

$$L(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} \ell(a_i, b_i | \mathbf{x})$$

 (a_i, b_i) is a training sample, a_i is the input and b_i is the expected output



Linear regression: Consider $\ell(a_i, b_i | \mathbf{x}) = ||\mathbf{a}_i^\mathsf{T} \mathbf{x} - b_i||^2$



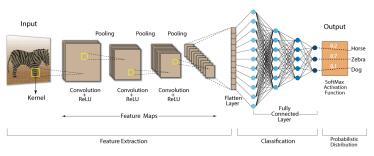
Robustness in Learning (II)

Neural network: Consider $\ell(a_i, b_i | \mathbf{x}) = \|\mathcal{M}(a_i | \mathbf{x}) - b_i\|^2$

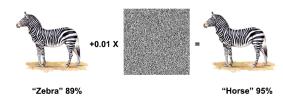
$$L(\boldsymbol{x}) := \frac{1}{N} \sum\nolimits_{i=1}^{N} \lVert \mathcal{M}(a_i | \boldsymbol{x}) - b_i \rVert^2$$

where $\mathcal{M}(\cdot|x)$ denotes the model with parameters x

Convolution Neural Network (CNN)



Robustness in Learning (III)



- ► **Robust training:** Consider inputs with modifications represented as perturbations **y** of data.
- ▶ It amounts to choosing *x* to solve the **minmax problem**:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \frac{1}{N} \sum_{i=1}^N \max_{\boldsymbol{y} \in \mathcal{S}} \ \ell(a_i + \boldsymbol{y}, b_i | \boldsymbol{x})$$

where S denotes allowable perturbations

Outline

Motivation

Background

- ▶ Minmax Problems
- ▶ Convergence Measure

Algorithms

Minmax Problems

Consider the following minmax problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{y})$$

Applications:

► Worst-case design (robust optimization): Minimize over *x* the loss function with the worst possible value of *y*

Minmax Problems

Consider the following minmax problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{y})$$

Applications:

- ► Worst-case design (robust optimization): Minimize over *x* the loss function with the worst possible value of *y*
- ▶ Duality theory for constrained optimization:
 - ▶ Primal problem

$$\min_{\mathbf{x} \in \mathbb{R}^m} f(\mathbf{x})$$
, s.t. $g(\mathbf{x}) \le 0$

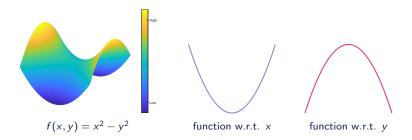
▶ Lagarangian function

$$\mathcal{L}(x,y) = f(x) + yg(x), \quad y \ge 0$$

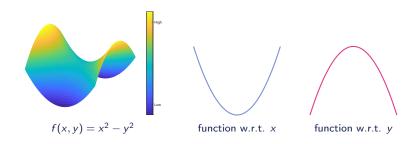
▶ Dual problem is a minmax problem

$$\max_{y \geq 0} \min_{\mathbf{x} \in \mathbb{R}^m} \mathcal{L}(\mathbf{x}, y) \quad \Longleftrightarrow \quad -\min_{y \geq 0} \max_{\mathbf{x} \in \mathbb{R}^m} -\mathcal{L}(\mathbf{x}, y)$$

Convex-concave Functions



Convex-concave Functions

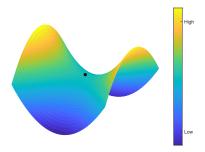


Definition: Convex-concave Function

The function f(x, y) is convex-concave if

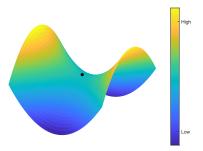
- ▶ for any $y \in \mathbb{R}^n$, the function f(x, y) is a convex function of x; and
- lacktriangleright for any $oldsymbol{x} \in \mathbb{R}^m$, the function $f(oldsymbol{x}, oldsymbol{y})$ is a concave function of $oldsymbol{y}$

Saddle Points



 $f(x,y) = x^2 - y^2$ with saddle point (0,0)

Saddle Points



 $f(x,y) = x^2 - y^2$ with saddle point (0,0)

Definition: Saddle Points

A saddle point of the minmax problem is a pair $(\pmb{x}^*, \pmb{y}^*) \in \mathbb{R}^m imes \mathbb{R}^n$ that

$$f(\mathbf{x}^*, \mathbf{y}) \le f(\mathbf{x}^*, \mathbf{y}^*) \le f(\mathbf{x}, \mathbf{y}^*)$$

for all $\pmb{x} \in \mathbb{R}^m$ and $\pmb{y} \in \mathbb{R}^n$

Outline

Motivation

Background

- ▶ Minmax Problems
- ▶ Convergence Measure

Algorithms

Primal-dual Gap

Define the constant D and the neighborhood $\mathcal S$ of saddle point $({\pmb x}^*, {\pmb y}^*)$

$$D := \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + \|\mathbf{y}_0 - \mathbf{y}^*\|^2$$

$$S := \{(x, y) : ||x - x^*||^2 + ||y - y^*||^2 \le 2D\}$$

Primal-dual Gap

Define the constant D and the neighborhood S of saddle point (x^*, y^*)

$$D := \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + \|\mathbf{y}_0 - \mathbf{y}^*\|^2$$

$$S := \{(\mathbf{x}, \mathbf{y}) : \|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2 \le 2D\}$$

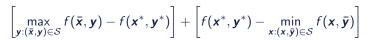
Definition: Primal-dual Gap

For fixed \bar{x} and \bar{y} , the primal-dual gap is

$$\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}},\boldsymbol{y})\in\mathcal{S}} f(\bar{\boldsymbol{x}},\boldsymbol{y}) - \min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}})\in\mathcal{S}} f(\boldsymbol{x},\bar{\boldsymbol{y}})$$

Remark:

- ightharpoonup The primal-dual gap is zero iff (\bar{x}, \bar{y}) is a saddle point
- ▶ We also write the primal dual gap as



Monotone Operator

Consider the minmax problem with convex-concave objective function

► Saddle point satisfies the first-order optimality condition

$$abla_{\mathbf{x}} f(\mathbf{x}^*, \mathbf{y}^*) = \mathbf{0}$$
 and $abla_{\mathbf{y}} f(\mathbf{x}^*, \mathbf{y}^*) = \mathbf{0}$

▶ Define $z := [x; y] \in \mathbb{R}^{m+n}$ and the monotone operator

$$F(z) := [\nabla_x f(x, y); -\nabla_y f(x, y)] \implies F(z^*) = \mathbf{0}$$

Definition: Monotone Operator

F is a monotone operator if for any $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^{m+n}$

$$\langle F(\mathbf{z}_1) - F(\mathbf{z}_2), \mathbf{z}_1 - \mathbf{z}_2 \rangle \geq 0$$

Remark: If $h: \mathbb{R}^n \to \mathbb{R}$ is convex, then $\nabla h: \mathbb{R}^n \to \mathbb{R}^n$ is monotone

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

GDA (I)

Algorithm: Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k)$$
 Gradient Descent

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k)$$
 Gradient Ascent

GDA (I)

Algorithm: Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$m{x}_{k+1} = m{x}_k - \eta
abla_{m{x}} f(m{x}_k, m{y}_k)$$
 Gradient Descent $m{y}_{k+1} = m{y}_k + \eta
abla_{m{y}} f(m{x}_k, m{y}_k)$ Gradient Ascent

- ► Even for the simplest case, GDA diverges
- ► Consider the following bilinear problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{y} \in \mathbb{R}^d} f(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^\mathsf{T} \boldsymbol{y}$$

► The GDA updates for this problem

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \mathbf{y}_k$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \mathbf{x}_k$$

GDA (II)

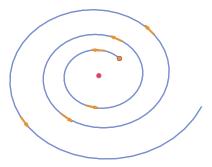
▶ The GDA updates for this problem

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \mathbf{y}_k$$
 and $\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \mathbf{x}_k$

 \blacktriangleright At the k-th of GDA, we have

$$\|\mathbf{x}_{k+1}\|^2 + \|\mathbf{y}_{k+1}\|^2 = (1 + \eta^2)(\|\mathbf{x}_k\|^2 + \|\mathbf{y}_k\|^2)$$

▶ GDA diverges because $1 + \eta^2 > 1$



• Saddle (0,0) • Initial (10,10)

School of Data Science

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

PPA (I)

Algorithm: Proximal Point Algorithm

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ **Iteration:** The pair (x_{k+1}, y_{k+1}) is the unique solution to

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ f(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_k\|^2 - \frac{1}{2\eta} \|\boldsymbol{y} - \boldsymbol{y}_k\|^2 \right\}$$

PPA (I)

Algorithm: Proximal Point Algorithm

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ **Iteration:** The pair (x_{k+1}, y_{k+1}) is the unique solution to

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ f(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_k\|^2 - \frac{1}{2\eta} \|\boldsymbol{y} - \boldsymbol{y}_k\|^2 \right\}$$

Remark: Iterative steps of PPA can be written as

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1})$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1})$$

Different from GDA steps

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k)$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k)$$

PPA (II)

▶ PPA for $f(x, y) = x^T y$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{x}_k - \eta \mathbf{y}_{k+1}$$

 $\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{y}_k + \eta \mathbf{x}_{k+1}$

 \blacktriangleright At the *k*-th iteration of PPA, we have

$$\|\mathbf{x}_{k+1}\|^2 + \|\mathbf{y}_{k+1}\|^2 = \frac{1}{1+\eta^2}(\|\mathbf{x}_k\|^2 + \|\mathbf{y}_k\|^2)$$

PPA (II)

ightharpoonup PPA for $f(x, y) = x^T y$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{x}_k - \eta \mathbf{y}_{k+1}$$

 $\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{y}_k + \eta \mathbf{x}_{k+1}$

 \blacktriangleright At the k-th iteration of PPA, we have

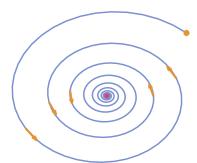
$$\|\mathbf{x}_{k+1}\|^2 + \|\mathbf{y}_{k+1}\|^2 = \frac{1}{1+\eta^2}(\|\mathbf{x}_k\|^2 + \|\mathbf{y}_k\|^2)$$

► True iterative steps

$$\mathbf{x}_{k+1} = \frac{\mathbf{x}_k - \eta \mathbf{y}_k}{1 + \eta^2}$$

$$\mathbf{y}_{k+1} = \frac{\mathbf{y}_k + \eta \mathbf{x}_k}{1 + \eta^2}$$

▶ PPA converges to saddle point



• Saddle (0, 0) • Initial (10, 10) Yilin Gu

PPA (III)

- ▶ Let iterates (x_k, y_k) be generated by PPA with step size η
- ▶ Define the averaged iterates (\bar{x}_k, \bar{y}_k) as

$$\bar{\mathbf{x}}_k := \frac{1}{k} \sum_{i=1}^k \mathbf{x}_i$$
 and $\bar{\mathbf{y}}_k := \frac{1}{k} \sum_{i=1}^k \mathbf{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}}_k,\boldsymbol{y})\in\mathcal{S}} f(\bar{\boldsymbol{x}}_k,\boldsymbol{y}) - \min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}}_k)\in\mathcal{S}} f(\boldsymbol{x},\bar{\boldsymbol{y}}_k) \leq \frac{D}{\eta k}$$

Remark: PPA involves operator inversion and is not easy to implement

Require: Efficient algorithms that behave like PPA!

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

Remark: OGDA can be seen as PPA with error term

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) + \eta \varepsilon_{\mathbf{x}, k}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) - \eta \varepsilon_{\mathbf{y}, k}$$

Approximate using linear extrapolation of the previous gradients

$$\nabla f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) \approx \nabla f(\mathbf{x}_k, \mathbf{y}_k) + [\nabla f(\mathbf{x}_k, \mathbf{y}_k) - \nabla f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})]$$

OGDA (II)

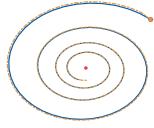
Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

- ightharpoonup Consider $f(x, y) = x^T y$
- ► Convergence paths are similar
- ► OGDA approximates PPA



− PPA → OGDA

Yilin Gu

OGDA (III)

- ▶ Let iterates (x_k, y_k) be generated by OGDA with step size η
- ▶ Define the averaged iterates (\bar{x}_k, \bar{y}_k) as

$$ar{\pmb{x}}_k := rac{1}{k} \sum
olimits_{i=1}^k \pmb{x}_i$$
 and $ar{\pmb{y}}_k := rac{1}{k} \sum
olimits_{i=1}^k \pmb{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\mathbf{y}:(\bar{\mathbf{x}}_k,\mathbf{y})\in\mathcal{S}} f(\bar{\mathbf{x}}_k,\mathbf{y}) - \min_{\mathbf{x}:(\mathbf{x},\bar{\mathbf{y}}_k)\in\mathcal{S}} f(\mathbf{x},\bar{\mathbf{y}}_k) \leq \frac{5D}{\eta k}$$

Remark:

- ▶ OGDA is an implementable version of PPA
- lue OGDA enjoys similar convergence guarantee $\mathcal{O}(1/k)$

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

EG (I)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \eta \mathsf{F}(\mathbf{z}_{k+\frac{1}{2}})$$

- ▶ Define vector z := [x; y]
- ▶ Define the operator F as $F(z) := [\nabla_x f(x, y); -\nabla_y f(x, y)]$
- ▶ EG utilizes the gradient of midpoint to update



EG (II)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

 $\mathbf{z}_{k+1} = \mathbf{z}_k - \eta \mathsf{F}(\mathbf{z}_{k+\frac{1}{2}})$

▶ Updates can be written as

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_{k-\frac{1}{2}} - \eta F(\mathbf{z}_{k-\frac{1}{2}}) - \eta [F(\mathbf{z}_k) - F(\mathbf{z}_{k-1})]$$

EG (II)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \eta \mathbf{F}(\mathbf{z}_{k+\frac{1}{2}})$$

Updates can be written as

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_{k-\frac{1}{2}} - \eta F(\mathbf{z}_{k-\frac{1}{2}}) - \eta [F(\mathbf{z}_k) - F(\mathbf{z}_{k-1})]$$

▶ When the variations are close to each other, i.e.,

$$F(z_k) - F(z_{k-1}) \approx F(z_{k+\frac{1}{2}}) - F(z_{k-\frac{1}{2}})$$

EG method approximates PPA

$$\mathbf{z}_{k+\frac{1}{2}} pprox \mathbf{z}_{k-\frac{1}{2}} - \eta F(\mathbf{z}_{k+\frac{1}{2}})$$

EG (III)

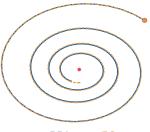
Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \eta F(\mathbf{z}_{k+\frac{1}{2}})$$

- ightharpoonup Consider $f(x, y) = x^T y$
- ▶ Convergence paths are similar
- ► EG approximates PPA



- PPA - · EG

Yilin Gu

EG (IV)

- ▶ Let iterates (x_k, y_k) be generated by EG with step size η
- ▶ Define the averaged iterates (\bar{x}_k, \bar{y}_k) as

$$ar{\pmb{x}}_k := rac{1}{k} \sum
olimits_{i=1}^k \pmb{x}_i$$
 and $ar{\pmb{y}}_k := rac{1}{k} \sum
olimits_{i=1}^k \pmb{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\mathbf{y}:(\bar{\mathbf{x}}_k,\mathbf{y})\in\mathcal{S}} f(\bar{\mathbf{x}}_k,\mathbf{y}) - \min_{\mathbf{x}:(\mathbf{x},\bar{\mathbf{y}}_k)\in\mathcal{S}} f(\mathbf{x},\bar{\mathbf{y}}_k) \leq \frac{16D}{\eta k}$$

Remark:

- ► EG is an implementable version of PPA
- lacksquare EG enjoys similar convergence guarantee $\mathcal{O}(1/k)$

Last Iterate Convergence

The averaged iterate is not always what we want!

- ▶ Imagine that we are seeking for a sparse solution x^*
- ▶ Assume $\bar{x} := (x_1 + x_2 + x_3)/3$ reaches ε -accuracy

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \bar{\mathbf{x}} = \begin{bmatrix} 2/3 \\ 1 \\ 1/3 \end{bmatrix}$$

Last Iterate Convergence

The averaged iterate is not always what we want!

- ▶ Imagine that we are seeking for a sparse solution x^*
- Assume $\bar{x} := (x_1 + x_2 + x_3)/3$ reaches ε-accuracy

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \bar{\mathbf{x}} = \begin{bmatrix} 2/3 \\ 1 \\ 1/3 \end{bmatrix}$$

Theorem: Last Iterate Convergence

- ▶ Let iterates (x_k, y_k) be generated by EG/PPA
- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}: (\boldsymbol{x}^k, \boldsymbol{y}) \in \mathcal{S}} f(\boldsymbol{x}^k, \boldsymbol{y}) - \min_{\boldsymbol{x}: (\boldsymbol{x}, \boldsymbol{y}^k) \in \mathcal{S}} f(\boldsymbol{x}, \boldsymbol{y}^k) = \Theta\left(\frac{1}{\sqrt{k}}\right)$$

Remark: Slower than the averaged iterate results O(1/k)

Conclusion

Motivation

Background

- ▶ Minmax Problems
- ▶ Convergence Measure

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

