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Robustness in Learning (I)

Standard training: Minimize empirical loss by selecting parameters x

L(x) :=
1

N

∑N

i=1
ℓ(ai , bi |x)

(ai , bi ) is a training sample, ai is the input and bi is the expected output

Linear regression: Consider ℓ(ai , bi |x) = ∥aTi x − bi∥2

L(x) :=
1

N

∑N

i=1
∥aTi x − bi∥2 =

1

N
∥Ax − b∥2
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Robustness in Learning (II)

Neural network: Consider ℓ(ai , bi |x) = ∥M(ai |x)− bi∥2

L(x) :=
1

N

∑N

i=1
∥M(ai |x)− bi∥2

where M(·|x) denotes the model with parameters x
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Robustness in Learning (III)

▶ Robust training: Consider inputs with modifications represented as
perturbations y of data.

▶ It amounts to choosing x to solve the minmax problem:

min
x∈Rm

1

N

∑N

i=1
max
y∈S

ℓ(ai + y , bi |x)

where S denotes allowable perturbations
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Minmax Problems

Consider the following minmax problem:

min
x∈Rm

max
y∈Rn

f (x , y)

Applications:

▶ Worst-case design (robust optimization): Minimize over x the loss
function with the worst possible value of y

▶ Duality theory for constrained optimization:

▶ Primal problem
min
x∈Rm

f (x), s.t. g(x) ≤ 0

▶ Lagarangian function

L(x , y) = f (x) + yg(x), y ≥ 0

▶ Dual problem is a minmax problem

max
y≥0

min
x∈Rm

L(x , y) ⇐⇒ −min
y≥0

max
x∈Rm

−L(x , y)
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Convex-concave Functions

Low

High

f (x , y) = x2 − y2 function w.r.t. x function w.r.t. y

Definition: Convex-concave Function

The function f (x , y) is convex-concave if

▶ for any y ∈ Rn, the function f (x , y) is a convex function of x ; and
▶ for any x ∈ Rm, the function f (x , y) is a concave function of y
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Saddle Points

Low

High

f (x , y) = x2 − y2 with saddle point (0, 0)

Definition: Saddle Points

A saddle point of the minmax problem is a pair (x∗, y∗) ∈ Rm × Rn that

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x , y∗)

for all x ∈ Rm and y ∈ Rn
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Primal-dual Gap

Define the constant D and the neighborhood S of saddle point (x∗, y∗)

D := ∥x0 − x∗∥2 + ∥y0 − y∗∥2

S :=
{
(x , y) : ∥x − x∗∥2 + ∥y − y∗∥2 ≤ 2D

}

Definition: Primal-dual Gap

For fixed x̄ and ȳ , the primal-dual gap is

max
y :(x̄,y)∈S

f (x̄ , y)− min
x :(x,ȳ)∈S

f (x , ȳ)

Remark:

▶ The primal-dual gap is zero iff (x̄ , ȳ) is a saddle point

▶ We also write the primal dual gap as[
max

y :(x̄,y)∈S
f (x̄ , y)− f (x∗, y∗)

]
+

[
f (x∗, y∗)− min

x :(x,ȳ)∈S
f (x , ȳ)

]
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Monotone Operator

Consider the minmax problem with convex-concave objective function

▶ Saddle point satisfies the first-order optimality condition

∇x f (x∗, y∗) = 0 and ∇y f (x∗, y∗) = 0

▶ Define z := [x ; y ] ∈ Rm+n and the monotone operator

F (z) := [∇x f (x , y);−∇y f (x , y)] =⇒ F (z∗) = 0

Definition: Monotone Operator

F is a monotone operator if for any z1, z2 ∈ Rm+n

⟨F (z1)− F (z2), z1 − z2⟩ ≥ 0

Remark: If h : Rn → R is convex, then ∇h : Rn → Rn is monotone
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GDA (I)

Algorithm: Gradient Descent Ascent

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:

xk+1 = xk − η∇x f (xk , yk) Gradient Descent

yk+1 = yk + η∇y f (xk , yk) Gradient Ascent

▶ Even for the simplest case, GDA diverges

▶ Consider the following bilinear problem

min
x∈Rd

max
y∈Rd

f (x , y) = xTy

▶ The GDA updates for this problem

xk+1 = xk − ηyk

yk+1 = yk + ηxk
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GDA (II)

▶ The GDA updates for this problem

xk+1 = xk − ηyk and yk+1 = yk + ηxk
▶ At the k-th of GDA, we have

∥xk+1∥2 + ∥yk+1∥2 = (1 + η2)(∥xk∥2 + ∥yk∥2)
▶ GDA diverges because 1 + η2 > 1

• Saddle (0, 0) • Initial (10, 10)
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PPA (I)

Algorithm: Proximal Point Algorithm

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration: The pair (xk+1, yk+1) is the unique solution to

min
x∈Rm

max
y∈Rn

{
f (x , y) +

1

2η
∥x − xk∥2 −

1

2η
∥y − yk∥2

}

Remark: Iterative steps of PPA can be written as

xk+1 = xk − η∇x f (xk+1, yk+1)

yk+1 = yk + η∇y f (xk+1, yk+1)

Different from GDA steps

xk+1 = xk − η∇x f (xk , yk)

yk+1 = yk + η∇y f (xk , yk)
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PPA (II)
▶ PPA for f (x , y) = xTy

xk+1 = xk − η∇x f (xk+1, yk+1) = xk − ηyk+1

yk+1 = yk + η∇y f (xk+1, yk+1) = yk + ηxk+1

▶ At the k-th iteration of PPA, we have

∥xk+1∥2 + ∥yk+1∥2 =
1

1 + η2
(∥xk∥2 + ∥yk∥2)

▶ True iterative steps

xk+1 =
xk − ηyk
1 + η2

yk+1 =
yk + ηxk
1 + η2

▶ PPA converges to saddle point

• Saddle (0, 0) • Initial (10, 10)
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PPA (III)

▶ Let iterates (xk , yk) be generated by PPA with step size η

▶ Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

∑k

i=1
xi and ȳk :=

1

k

∑k

i=1
yi

Theorem: Convergence of Averaged Iterates

▶ If f is convex-concave and L-smooth

▶ Then, we have

max
y :(x̄k ,y)∈S

f (x̄k , y)− min
x :(x,ȳk )∈S

f (x , ȳk) ≤
D

ηk

Remark: PPA involves operator inversion and is not easy to implement

Require: Efficient algorithms that behave like PPA!
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OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:

xk+1 = xk − 2η∇x f (xk , yk) + η∇x f (xk−1, yk−1)

yk+1 = yk + 2η∇y f (xk , yk)− η∇y f (xk−1, yk−1)

Remark: OGDA can be seen as PPA with error term

xk+1 = xk − η∇x f (xk+1, yk+1) + ηεx,k

yk+1 = yk + η∇y f (xk+1, yk+1)− ηεy ,k

Approximate using linear extrapolation of the previous gradients

∇f (xk+1, yk+1) ≈ ∇f (xk , yk) + [∇f (xk , yk)−∇f (xk−1, yk−1)]
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OGDA (II)

Algorithm: Optimistic Gradient Descent Ascent

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:

xk+1 = xk − 2η∇x f (xk , yk) + η∇x f (xk−1, yk−1)

yk+1 = yk + 2η∇y f (xk , yk)− η∇y f (xk−1, yk−1)

▶ Consider f (x , y) = xTy

▶ Convergence paths are similar

▶ OGDA approximates PPA

− PPA −· OGDA
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OGDA (III)

▶ Let iterates (xk , yk) be generated by OGDA with step size η

▶ Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

∑k

i=1
xi and ȳk :=

1

k

∑k

i=1
yi

Theorem: Convergence of Averaged Iterates

▶ If f is convex-concave and L-smooth

▶ Then, we have

max
y :(x̄k ,y)∈S

f (x̄k , y)− min
x :(x,ȳk )∈S

f (x , ȳk) ≤
5D

ηk

Remark:

▶ OGDA is an implementable version of PPA

▶ OGDA enjoys similar convergence guarantee O(1/k)
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EG (I)

Algorithm: Extragradient Method

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:
zk+ 1

2
= zk − ηF (zk)

zk+1 = zk − ηF (zk+ 1
2
)

▶ Define vector z := [x ; y ]

▶ Define the operator F as

F (z) := [∇x f (x , y);−∇y f (x , y)]

▶ EG utilizes the gradient of
midpoint to update

zk+1

zk

2F (zk)

zk+ 1
2

2F (zk+ 1
2
)

2F (zk+ 1
2
)
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EG (II)

Algorithm: Extragradient Method

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:
zk+ 1

2
= zk − ηF (zk)

zk+1 = zk − ηF (zk+ 1
2
)

▶ Updates can be written as

zk+ 1
2
= zk− 1

2
− ηF (zk− 1

2
)− η[F (zk)− F (zk−1)]

▶ When the variations are close to each other, i.e.,

F (zk)− F (zk−1) ≈ F (zk+ 1
2
)− F (zk− 1

2
)

EG method approximates PPA

zk+ 1
2
≈ zk− 1

2
− ηF (zk+ 1

2
)
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EG (II)
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EG (III)

Algorithm: Extragradient Method

▶ Initialization: x0 ∈ Rm, y0 ∈ Rn and step size η > 0

▶ Iteration:
zk+ 1

2
= zk − ηF (zk)

zk+1 = zk − ηF (zk+ 1
2
)

▶ Consider f (x , y) = xTy

▶ Convergence paths are similar

▶ EG approximates PPA

− PPA −· EG
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EG (IV)

▶ Let iterates (xk , yk) be generated by EG with step size η

▶ Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

∑k

i=1
xi and ȳk :=

1

k

∑k

i=1
yi

Theorem: Convergence of Averaged Iterates

▶ If f is convex-concave and L-smooth

▶ Then, we have

max
y :(x̄k ,y)∈S

f (x̄k , y)− min
x :(x,ȳk )∈S

f (x , ȳk) ≤
16D

ηk

Remark:

▶ EG is an implementable version of PPA

▶ EG enjoys similar convergence guarantee O(1/k)
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Last Iterate Convergence

The averaged iterate is not always what we want!

▶ Imagine that we are seeking for a sparse solution x∗

▶ Assume x̄ := (x1 + x2 + x3)/3 reaches ε-accuracy

x1 =

11
1

 x2 =

11
0

 x3 =

01
0

 x̄ =

2/31
1/3



Theorem: Last Iterate Convergence

▶ Let iterates (xk , yk) be generated by EG/PPA

▶ If f is convex-concave and L-smooth

▶ Then, we have

max
y :(xk ,y)∈S

f (xk , y)− min
x :(x,y k )∈S

f (x , y k) = Θ
( 1√

k

)
Remark: Slower than the averaged iterate results O(1/k)
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