

Outline

Motivation

Background

Algorithms

Robustness in Learning (I)

Standard training: Minimize empirical loss by selecting parameters *x*

$$L(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} \ell(a_i, b_i | \mathbf{x})$$

 (a_i, b_i) is a training sample, a_i is the input and b_i is the expected output

Linear regression: Consider $\ell(a_i, b_i | \mathbf{x}) = ||a_i^\mathsf{T} \mathbf{x} - b_i||^2$

$$L(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} ||a_i^\mathsf{T} \mathbf{x} - b_i||^2 = \frac{1}{N} ||A\mathbf{x} - b||^2$$

Robustness in Learning (II)

Neural network: Consider
$$\ell(a_i, b_i | \mathbf{x}) = \|\mathcal{M}(a_i | \mathbf{x}) - \underline{b_i}\|^2$$

$$L(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{M}(a_i | \mathbf{x}) - b_i\|^2$$

where $\mathcal{M}(\cdot|\mathbf{x})$ denotes the model with parameters \mathbf{x}

Convolution Neural Network (CNN)

Robustness in Learning (III)

- ▶ **Robust training:** Consider inputs with modifications represented as perturbations *y* of data.
- ▶ It amounts to choosing *x* to solve the **minmax problem**:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \frac{1}{N} \sum_{i=1}^N \max_{\boldsymbol{y} \in \mathcal{S}} \frac{\text{worst cose of loss } \frac{\text{minimise}}{|\boldsymbol{x}|}}{\sum_{i=1}^N \max_{\boldsymbol{y} \in \mathcal{S}} \ell(a_i + \boldsymbol{y}, b_i | \boldsymbol{x})}$$

where ${\cal S}$ denotes allowable perturbations

Outline

Motivation

Background

- ▶ Minmax Problems
- ▶ Convergence Measure

Algorithms

Minmax Problems

Consider the following minmax problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{y})$$

Applications:

► Worst-case design (robust optimization): Minimize over *x* the loss function with the worst possible value of *y*

Minmax Problems

Consider the following minmax problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{y})$$

Applications:

- \blacktriangleright Worst-case design (robust optimization): Minimize over x the loss function with the worst possible value of y
- ▶ Duality theory for constrained optimization:
 - Primal problem

$$\min_{\mathbf{x} \in \mathbb{R}^m} f(\mathbf{x}), \quad \text{s.t. } \underline{g(\mathbf{x}) \leq 0}$$

$$\max_{\mathbf{x} \in \mathbb{R}^m} f(\mathbf{x}), \quad \text{s.t. } \underline{g(\mathbf{x}) \leq 0}$$

$$\max_{\mathbf{y}} f(\mathbf{x}) + y \overline{g(\mathbf{x})} \rightarrow \text{close to } \min_{\mathbf{x}} f(\mathbf{x})$$

$$(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + y g(\mathbf{x}), \quad \mathbf{y} \geq 0$$

► Lagarangian function

$$\mathcal{L}(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + yg(\mathbf{x}), \quad \mathbf{y} \geq 0$$

Dual problem is a minmax problem

$$\max_{y\geq 0} \min_{\mathbf{x}\in\mathbb{R}^m} \mathcal{L}(\mathbf{x},y) \iff -\min_{y\geq 0} \max_{\mathbf{x}\in\mathbb{R}^m} -\mathcal{L}(\mathbf{x},y)$$

Convex-concave Functions (1) max min L(x,y) (2) - min max - L(x,y) y>0 x

$$f(x,y) = x^2 - y^2$$

function w.r.t. y

min
$$L(X^{*},y)$$
 $L(x,y)$

$$-L(x,y)$$

$$-L(x,y)$$

$$-L(x,y)$$

 $\chi^* = \chi^*$

function w.r.t x

Convex-concave Functions

Definition: Convex-concave Function

The function f(x, y) is convex-concave if

- ▶ for any $y \in \mathbb{R}^n$, the function f(x, y) is a convex function of x; and
- ▶ for any $x \in \mathbb{R}^m$, the function f(x, y) is a concave function of y

Saddle Points

$$f(x,y) = x^2 - y^2$$
 with saddle point $(0,0)$

$$f(0,y) \leq f(0,0) \leq f(x,0)$$

Saddle Points

 $f(x,y) = x^2 - y^2$ with saddle point (0,0)

Definition: Saddle Points

A saddle point of the minmax problem is a pair $(x^*, y^*) \in \mathbb{R}^m \times \mathbb{R}^n$ that

$$f(\boldsymbol{x}^*, \boldsymbol{y}) \leq f(\boldsymbol{x}^*, \boldsymbol{y}^*) \leq f(\boldsymbol{x}, \boldsymbol{y}^*)$$

for all $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$

Outline

Motivation

Background

- ▶ Minmax Problems
- ▶ Convergence Measure

Algorithms

Primal-dual Gap

Define the constant D and the neighborhood S of saddle point (x^*, y^*)

$$D:=\|oldsymbol{x}_0-oldsymbol{x}^*\|^2+\|oldsymbol{y}_0-oldsymbol{y}^*\|^2
ightharpoonup \|oldsymbol{initial}\|^2$$

$$S := \{(\mathbf{x}, \mathbf{y}) : \|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2 \le 2D\}$$

all the iterations will in S.

Primal-dual Gap

Define the constant D and the neighborhood S of saddle point (x^*, y^*)

$$D := \|\mathbf{x}_0 - \mathbf{x}^*\|^2 + \|\mathbf{y}_0 - \mathbf{y}^*\|^2$$

$$S := \{(\mathbf{x}, \mathbf{y}) : \|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2 \le 2D\}$$

Definition: Primal-dual Gap

For fixed \bar{x} and \bar{y} , the primal-dual gap is

$$\left| f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) - f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \right| < \varepsilon \quad \Leftarrow \quad \max_{\mathbf{y}: (\bar{\mathbf{x}}, \mathbf{y}) \in \mathcal{S}} f(\bar{\mathbf{x}}, \mathbf{y}) - \min_{\mathbf{x}: (\mathbf{x}, \bar{\mathbf{y}}) \in \mathcal{S}} f(\mathbf{x}, \bar{\mathbf{y}}) < \varepsilon$$

$$\max_{y} f(x,y) \ge f(x,y^*) \ge \frac{f(x,y^*)}{\cosh(x,y)} \ge \min_{x} f(x,y)$$

Remark:

- ▶ The primal-dual gap is zero iff (\bar{x}, \bar{y}) is a saddle point
- ▶ We also write the primal dual gap as

$$\left[\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}},\boldsymbol{y})\in\mathcal{S}}f(\bar{\boldsymbol{x}},\boldsymbol{y})-f(\boldsymbol{x}^*,\boldsymbol{y}^*)\right]+\left[f(\boldsymbol{x}^*,\boldsymbol{y}^*)-\min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}})\in\mathcal{S}}f(\boldsymbol{x},\bar{\boldsymbol{y}})\right]$$

Convex-Concave Minmax Optimization

Monotone Operator

Consider the minmax problem with convex-concave objective function

Saddle point satisfies the first-order optimality condition

$$abla_{oldsymbol{x}} f(oldsymbol{x}^*, oldsymbol{y}^*) = oldsymbol{0} \quad \text{and} \quad
abla_{oldsymbol{y}} f(oldsymbol{x}^*, oldsymbol{y}^*) = oldsymbol{0}$$

▶ Define $z := [x; y] \in \mathbb{R}^{m+n}$ and the monotone operator

$$F(z) := [
abla_x f(x,y);
begin{picture}(0,0) \line(0,0) \line(0$$

Definition: Monotone Operator

F is a monotone operator if for any $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^{m+n}$

$$\langle F(\mathbf{z}_1) - F(\mathbf{z}_2), \mathbf{z}_1 - \mathbf{z}_2 \rangle \geq 0$$

Remark: If $h: \mathbb{R}^n \to \mathbb{R}$ is convex, then $\nabla h: \mathbb{R}^n \to \mathbb{R}^n$ is monotone

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▷ Extragradient Method (EG)

GDA (I)

Algorithm: Gradient Descent Ascent

▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$

GDA (I)

Algorithm: Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- **▶** Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k)$$
 Gradient Descent

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k)$$
 Gradient Ascent

- ► Even for the simplest case, GDA diverges
- ► Consider the following bilinear problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{y} \in \mathbb{R}^d} f(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^\mathsf{T} \boldsymbol{y}$$

► The GDA updates for this problem

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \mathbf{y}_k$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \mathbf{x}_k$$

GDA (II)

► The GDA updates for this problem

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \mathbf{y}_k$$
 and $\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \mathbf{x}_k$

 \blacktriangleright At the k-th of GDA, we have

$$\|\mathbf{x}_{k+1}\|^2 + \|\mathbf{y}_{k+1}\|^2 = (1 + \eta^2)(\|\mathbf{x}_k\|^2 + \|\mathbf{y}_k\|^2)$$

► GDA diverges because $1 + \eta^2 > 1$ (H η^2) (||X||^2 + ||Y||^2)

• Saddle (0,0) • Initial (10,10)

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▷ Extragradient Method (EG)

PPA (I)

Algorithm: Proximal Point Algorithm

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ **Iteration:** The pair (x_{k+1}, y_{k+1}) is the unique solution to

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ f(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_k\|^2 - \frac{1}{2\eta} \|\boldsymbol{y} - \boldsymbol{y}_k\|^2 \right\} = 9000$$

strongly concave to y

Optimality condition;
$$\nabla_{x} g(X_{RH}, y_{RH}) = 0$$

$$\nabla_{y} g(X_{RH}, y_{RH}) = 0$$

PPA (I)

Algorithm: Proximal Point Algorithm

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ **Iteration:** The pair (x_{k+1}, y_{k+1}) is the unique solution to

$$\min_{\boldsymbol{x} \in \mathbb{R}^m} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ f(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\eta} \|\boldsymbol{x} - \boldsymbol{x}_k\|^2 - \frac{1}{2\eta} \|\boldsymbol{y} - \boldsymbol{y}_k\|^2 \right\}$$

Remark: Iterative steps of PPA can be written as

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1})$$

Different from GDA steps

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k)$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k)$$

PPA (II)

▶ PPA for $f(x, y) = x^T y$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \underline{\mathbf{y}_{k+1}}) = \mathbf{x}_k - \eta \mathbf{y}_{k+1}$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \underline{\mathbf{y}_{k+1}}) = \mathbf{y}_k + \eta \mathbf{x}_{k+1}$$

 \blacktriangleright At the k-th iteration of PPA, we have

$$\|\boldsymbol{x}_{k+1}\|^2 + \|\boldsymbol{y}_{k+1}\|^2 = \frac{1}{1+\eta^2}(\|\boldsymbol{x}_k\|^2 + \|\boldsymbol{y}_k\|^2)$$

PPA (II)

ightharpoonup PPA for $f(x,y) = x^{T}y$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{x}_k - \eta \mathbf{y}_{k+1}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = \mathbf{y}_k + \eta \mathbf{x}_{k+1}$$

 \blacktriangleright At the k-th iteration of PPA, we have

$$\|\boldsymbol{x}_{k+1}\|^2 + \|\boldsymbol{y}_{k+1}\|^2 = \frac{1}{1+\eta^2}(\|\boldsymbol{x}_k\|^2 + \|\boldsymbol{y}_k\|^2)$$

► True iterative steps

$$\mathbf{x}_{k+1} = \frac{\mathbf{x}_k - \eta \mathbf{y}_k}{1 + \eta^2}$$

$$\mathbf{y}_{k+1} = \frac{\mathbf{y}_k + \eta \mathbf{x}_k}{1 + \eta^2}$$

▶ PPA converges to saddle point

Yilin Gu

PPA (III)

- ▶ Let iterates $(\mathbf{x}_k, \mathbf{y}_k)$ be generated by PPA with step size η
- lacktriangle Define the averaged iterates $(\bar{\pmb{x}}_k, \bar{\pmb{y}}_k)$ as

$$ar{m{x}}_k := rac{1}{k} \sum_{i=1}^k m{x}_i$$
 and $ar{m{y}}_k := rac{1}{k} \sum_{i=1}^k m{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}}_k,\boldsymbol{y})\in\mathcal{S}} f(\bar{\boldsymbol{x}}_k,\boldsymbol{y}) - \min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}}_k)\in\mathcal{S}} f(\boldsymbol{x},\bar{\boldsymbol{y}}_k) \leq \frac{D}{\eta k}$$

Remark: PPA involves operator inversion and is not easy to implement

Require: Efficient algorithms that behave like PPA!

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▷ Extragradient Method (EG)

OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

Remark: OGDA can be seen as PPA with error term

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) + \eta \varepsilon_{\mathbf{x}, k}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) - \eta \varepsilon_{\mathbf{y}, k}$$

Approximate using linear extrapolation of the previous gradients

$$\nabla f(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) \stackrel{>}{pprox} \nabla f(\mathbf{x}_k, \mathbf{y}_k) + [\nabla f(\mathbf{x}_k, \mathbf{y}_k) - \nabla f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})]$$

OGDA (II)

Algorithm: Optimistic Gradient Descent Ascent

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 2\eta \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}_k) + \eta \nabla_{\mathbf{x}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + 2\eta \nabla_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}_k) - \eta \nabla_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}_{k-1})$$

- ightharpoonup Consider $f(x, y) = x^{\mathsf{T}}y$
- ► Convergence paths are similar
- ► OGDA approximates PPA

OGDA (III)

- ▶ Let iterates $(\mathbf{x}_k, \mathbf{y}_k)$ be generated by OGDA with step size η
- ightharpoonup Define the averaged iterates $(\bar{\pmb{x}}_k, \bar{\pmb{y}}_k)$ as

$$ar{m{x}}_k := rac{1}{k} \sum_{i=1}^k m{x}_i$$
 and $ar{m{y}}_k := rac{1}{k} \sum_{i=1}^k m{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If *f* is convex-concave and *L*-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}}_k,\boldsymbol{y})\in\mathcal{S}} f(\bar{\boldsymbol{x}}_k,\boldsymbol{y}) - \min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}}_k)\in\mathcal{S}} f(\boldsymbol{x},\bar{\boldsymbol{y}}_k) \leq \frac{5D}{\eta k}$$

Remark:

- ► OGDA is an implementable version of PPA
- lacktriangle OGDA enjoys similar convergence guarantee $\mathcal{O}(1/k)$

Outline

Motivation

Background

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▷ Extragradient Method (EG)

EG (I)

Algorithm: Extragradient Method

▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$

▶ Iteration:

$$\begin{bmatrix} \mathbf{z} \cdot \mathbf{y} \end{bmatrix}^{\mathsf{T}} \quad \begin{bmatrix} \mathbf{z} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \end{bmatrix}^{\mathsf{T}} \\ \mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k) \\ \mathbf{z}_{k+1} = \mathbf{z}_k - \eta F(\mathbf{z}_{k+\frac{1}{2}}) \end{bmatrix}$$

- ▶ Define vector z := [x; y]
- ▶ Define the operator F as $F(z) := [\nabla_x f(x, y); -\nabla_y f(x, y)]$
- ▶ EG utilizes the gradient of midpoint to update

EG (II)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- **▶** Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$oldsymbol{z}_{k+1} = oldsymbol{z}_k - \eta oldsymbol{\digamma} oldsymbol{(z_{k+rac{1}{2}})} \quad oldsymbol{\mathbb{Z}_{k+rac{1}{2}}} = oldsymbol{\mathbb{Z}_{k}} - \eta oldsymbol{\digamma} oldsymbol{(\mathbb{Z}_{k+rac{1}{2}})}$$

▶ Updates can be written as

$$\begin{split} \mathbf{Z}_{k+\frac{1}{2}} &= \mathbf{Z}_{k-\frac{1}{2}} - \eta F(\mathbf{Z}_{k-\frac{1}{2}}) - \eta [F(\mathbf{Z}_{k}) - F(\mathbf{Z}_{k-1})] \\ \mathbf{Z}_{k+\frac{1}{2}} &= \mathbf{Z}_{k} - \eta F(\mathbf{Z}_{k}) \\ &= (\mathbf{Z}_{k+\frac{1}{2}} - \eta F(\mathbf{Z}_{k+\frac{1}{2}})) - \eta F(\mathbf{Z}_{k}) \\ &= \left[\mathbf{Z}_{k+\frac{1}{2}} + \eta F(\mathbf{Z}_{k+\frac{1}{2}}) - \eta F(\mathbf{Z}_{k+\frac{1}{2}}) - \eta F(\mathbf{Z}_{k}) \right] \\ &= \mathbf{Z}_{k+\frac{1}{2}} - \eta F(\mathbf{Z}_{k+\frac{1}{2}}) - \eta [F(\mathbf{Z}_{k+\frac{1}{2}}) - F(\mathbf{Z}_{k+\frac{1}{2}})] \\ &= \mathbf{Z}_{k+\frac{1}{2}} - \eta F(\mathbf{Z}_{k+\frac{1}{2}}) + \eta \left[(F(\mathbf{Z}_{k+\frac{1}{2}}) - F(\mathbf{Z}_{k+\frac{1}{2}})) - (F(\mathbf{Z}_{k}) - F(\mathbf{Z}_{k+1})) \right] \\ &= \mathbf{Z}_{k+\frac{1}{2}} - \eta F(\mathbf{Z}_{k+\frac{1}{2}}) + \eta \left[(F(\mathbf{Z}_{k+\frac{1}{2}}) - F(\mathbf{Z}_{k+\frac{1}{2}})) - (F(\mathbf{Z}_{k}) - F(\mathbf{Z}_{k+1})) \right] \end{split}$$

EG (II)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- ▶ Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \eta \mathbf{F}(\mathbf{z}_{k+\frac{1}{2}})$$

Updates can be written as

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_{k-\frac{1}{2}} - \eta F(\mathbf{z}_{k-\frac{1}{2}}) - \eta [F(\mathbf{z}_k) - F(\mathbf{z}_{k-1})]$$

▶ When the variations are close to each other, i.e.,

$$F(z_k) - F(z_{k-1}) \approx F(z_{k+\frac{1}{2}}) - F(z_{k-\frac{1}{2}})$$

EG method approximates PPA Approximate

$$\mathbf{z}_{k+rac{1}{2}} pprox \mathbf{z}_{k-rac{1}{2}} - \eta F(\mathbf{z}_{k+rac{1}{2}})$$

EG (III)

Algorithm: Extragradient Method

- ▶ Initialization: $\mathbf{x}_0 \in \mathbb{R}^m$, $\mathbf{y}_0 \in \mathbb{R}^n$ and step size $\eta > 0$
- **▶** Iteration:

$$\mathbf{z}_{k+\frac{1}{2}} = \mathbf{z}_k - \eta F(\mathbf{z}_k)$$

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \eta F(\mathbf{z}_{k+\frac{1}{2}})$$

- ightharpoonup Consider $f(x, y) = x^T y$
- ▶ Convergence paths are similar
- ► EG approximates PPA

EG (IV)

- ▶ Let iterates $(\mathbf{x}_k, \mathbf{y}_k)$ be generated by EG with step size η
- ightharpoonup Define the averaged iterates $(\bar{\boldsymbol{x}}_k, \bar{\boldsymbol{y}}_k)$ as

$$ar{m{x}}_k := rac{1}{k} \sum_{i=1}^k m{x}_i$$
 and $ar{m{y}}_k := rac{1}{k} \sum_{i=1}^k m{y}_i$

Theorem: Convergence of Averaged Iterates

- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}:(\bar{\boldsymbol{x}}_k,\boldsymbol{y})\in\mathcal{S}} f(\bar{\boldsymbol{x}}_k,\boldsymbol{y}) - \min_{\boldsymbol{x}:(\boldsymbol{x},\bar{\boldsymbol{y}}_k)\in\mathcal{S}} f(\boldsymbol{x},\bar{\boldsymbol{y}}_k) \leq \frac{16D}{\eta k}$$

Remark:

- ► EG is an implementable version of PPA
- ightharpoonup EG enjoys similar convergence guarantee $\mathcal{O}(1/k)$

Last Iterate Convergence

The averaged iterate is not always what we want!

- ▶ Imagine that we are seeking for a sparse solution x^*
- ▶ Assume $\bar{x} := (x_1 + x_2 + x_3)/3$ reaches ε -accuracy

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\bar{\mathbf{x}} = \begin{bmatrix} 2/3 \\ 1 \\ 1/3 \end{bmatrix}$

Last Iterate Convergence

The averaged iterate is not always what we want!

- ▶ Imagine that we are seeking for a sparse solution x*
- ▶ Assume $\bar{x} := (x_1 + x_2 + x_3)/3$ reaches ε -accuracy

$$m{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} \quad m{x}_2 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \quad m{x}_3 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \quad ar{m{x}} = egin{bmatrix} 2/3 \ 1 \ 1/3 \end{bmatrix}$$

Theorem: Last Iterate Convergence

- ▶ Let iterates (x_k, y_k) be generated by EG/PPA
- ▶ If f is convex-concave and L-smooth
- ▶ Then, we have

$$\max_{\boldsymbol{y}:(\boldsymbol{x}^k,\boldsymbol{y})\in\mathcal{S}}f(\boldsymbol{x}^k,\boldsymbol{y})-\min_{\boldsymbol{x}:(\boldsymbol{x},\boldsymbol{y}^k)\in\mathcal{S}}f(\boldsymbol{x},\boldsymbol{y}^k)=\Theta\Big(\frac{1}{\sqrt{k}}\Big)$$

Remark: Slower than the averaged iterate results $\mathcal{O}(1/k)$

Conclusion

Motivation

Background

- ▶ Minmax Problems

Algorithms

- ▶ Gradient Descent Ascent (GDA)
- ▶ Proximal Point Algorithm (PPA)
- ▶ Optimistic Gradient Descent Ascent (OGDA)
- ▶ Extragradient Method (EG)

