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Robustness in Learning (I)

Standard training: Minimize empirical loss by selecting parameters x

L(x) :=
1

N

XN

i=1
`(ai , bi |x)

(ai , bi ) is a training sample, ai is the input and bi is the expected output

Linear regression: Consider `(ai , bi |x) = kaTi x � bik2

L(x) :=
1

N

XN

i=1
kaTi x � bik

2
=

1

N
kAx � bk2
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Robustness in Learning (II)

Neural network: Consider `(ai , bi |x) = kM(ai |x)� bik2

L(x) :=
1

N

XN

i=1
kM(ai |x)� bik

2

where M(·|x) denotes the model with parameters x
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Robustness in Learning (III)

I Robust training: Consider inputs with modifications represented as

perturbations y of data.

I It amounts to choosing x to solve the minmax problem:

min
x2Rm

1

N

XN

i=1
max
y2S

`(ai + y , bi |x)

where S denotes allowable perturbations
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Minmax Problems

Consider the following minmax problem:

min
x2Rm

max
y2Rn

f (x , y)

Applications:

I Worst-case design (robust optimization): Minimize over x the loss

function with the worst possible value of y

I Duality theory for constrained optimization:

I Primal problem
min
x2Rm

f (x), s.t. g(x)  0

I Lagarangian function

L(x , y) = f (x) + yg(x), y � 0

I Dual problem is a minmax problem

max
y�0

min
x2Rm

L(x , y) () �min
y�0

max
x2Rm

�L(x , y)
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Convex-concave Functions

Low

High

f (x , y) = x2 � y2 function w.r.t. x function w.r.t. y

Definition: Convex-concave Function

The function f (x , y) is convex-concave if

I for any y 2 Rn
, the function f (x , y) is a convex function of x ; and

I for any x 2 Rm
, the function f (x , y) is a concave function of y
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Saddle Points

Low

High

f (x , y) = x2 � y2 with saddle point (0, 0)

Definition: Saddle Points

A saddle point of the minmax problem is a pair (x⇤, y⇤
) 2 Rm

⇥ Rn
that

f (x⇤, y)  f (x⇤, y⇤
)  f (x , y⇤

)

for all x 2 Rm
and y 2 Rn
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Primal-dual Gap

Define the constant D and the neighborhood S of saddle point (x⇤, y⇤
)

D := kx0 � x⇤
k
2
+ ky0 � y⇤

k
2

S :=
�
(x , y) : kx � x⇤

k
2
+ ky � y⇤

k
2
 2D

 

Definition: Primal-dual Gap

For fixed x̄ and ȳ , the primal-dual gap is

max
y :(x̄,y)2S

f (x̄ , y)� min
x :(x,ȳ)2S

f (x , ȳ)

Remark:

I The primal-dual gap is zero i↵ (x̄ , ȳ) is a saddle point

I We also write the primal dual gap as


max

y :(x̄,y)2S
f (x̄ , y)� f (x⇤, y⇤

)

�
+


f (x⇤, y⇤

)� min
x :(x,ȳ)2S

f (x , ȳ)
�
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Monotone Operator

Consider the minmax problem with convex-concave objective function

I Saddle point satisfies the first-order optimality condition

rx f (x⇤, y⇤
) = 0 and ry f (x⇤, y⇤

) = 0

I Define z := [x ; y ] 2 Rm+n
and the monotone operator

F (z) := [rx f (x , y);�ry f (x , y)] =) F (z⇤
) = 0

Definition: Monotone Operator

F is a monotone operator if for any z1, z2 2 Rm+n

hF (z1)� F (z2), z1 � z2i � 0

Remark: If h : Rn
! R is convex, then rh : Rn

! Rn
is monotone
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GDA (I)

Algorithm: Gradient Descent Ascent

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:

xk+1 = xk � ⌘rx f (xk , yk) Gradient Descent

yk+1 = yk + ⌘ry f (xk , yk) Gradient Ascent

I Even for the simplest case, GDA diverges

I Consider the following bilinear problem

min
x2Rd

max
y2Rd

f (x , y) = xTy

I The GDA updates for this problem

xk+1 = xk � ⌘yk
yk+1 = yk + ⌘xk
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GDA (II)

I The GDA updates for this problem

xk+1 = xk � ⌘yk and yk+1 = yk + ⌘xk
I At the k-th of GDA, we have

kxk+1k
2
+ kyk+1k

2
= (1 + ⌘2)(kxkk2 + kykk2)

I GDA diverges because 1 + ⌘2 > 1

• Saddle (0, 0) • Initial (10, 10)
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PPA (I)

Algorithm: Proximal Point Algorithm

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration: The pair (xk+1, yk+1) is the unique solution to

min
x2Rm

max
y2Rn

⇢
f (x , y) +

1

2⌘
kx � xkk2 �

1

2⌘
ky � ykk2

�

Remark: Iterative steps of PPA can be written as

xk+1 = xk � ⌘rx f (xk+1, yk+1)

yk+1 = yk + ⌘ry f (xk+1, yk+1)

Di↵erent from GDA steps

xk+1 = xk � ⌘rx f (xk , yk)

yk+1 = yk + ⌘ry f (xk , yk)
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PPA (II)

I PPA for f (x , y) = xTy

xk+1 = xk � ⌘rx f (xk+1, yk+1) = xk � ⌘yk+1

yk+1 = yk + ⌘ry f (xk+1, yk+1) = yk + ⌘xk+1

I At the k-th iteration of PPA, we have

kxk+1k
2
+ kyk+1k

2
=

1

1 + ⌘2
(kxkk2 + kykk2)

I True iterative steps

xk+1 =
xk � ⌘yk
1 + ⌘2

yk+1 =
yk + ⌘xk
1 + ⌘2

I PPA converges to saddle point

• Saddle (0, 0) • Initial (10, 10)
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PPA (III)

I Let iterates (xk , yk) be generated by PPA with step size ⌘

I Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

Xk

i=1
xi and ȳk :=

1

k

Xk

i=1
yi

Theorem: Convergence of Averaged Iterates

I If f is convex-concave and L-smooth

I Then, we have

max
y :(x̄k ,y)2S

f (x̄k , y)� min
x :(x,ȳk )2S

f (x , ȳk) 
D

⌘k

Remark: PPA involves operator inversion and is not easy to implement

Require: E�cient algorithms that behave like PPA!
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OGDA (I)

Algorithm: Optimistic Gradient Descent Ascent

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:

xk+1 = xk � 2⌘rx f (xk , yk) + ⌘rx f (xk�1, yk�1)

yk+1 = yk + 2⌘ry f (xk , yk)� ⌘ry f (xk�1, yk�1)

Remark: OGDA can be seen as PPA with error term

xk+1 = xk � ⌘rx f (xk+1, yk+1) + ⌘"x,k

yk+1 = yk + ⌘ry f (xk+1, yk+1)� ⌘"y ,k

Approximate using linear extrapolation of the previous gradients

rf (xk+1, yk+1) ⇡ rf (xk , yk) + [rf (xk , yk)�rf (xk�1, yk�1)]
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OGDA (II)

Algorithm: Optimistic Gradient Descent Ascent

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:

xk+1 = xk � 2⌘rx f (xk , yk) + ⌘rx f (xk�1, yk�1)

yk+1 = yk + 2⌘ry f (xk , yk)� ⌘ry f (xk�1, yk�1)

I Consider f (x , y) = xTy

I Convergence paths are similar

I OGDA approximates PPA

� PPA �· OGDA
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OGDA (III)

I Let iterates (xk , yk) be generated by OGDA with step size ⌘

I Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

Xk

i=1
xi and ȳk :=

1

k

Xk

i=1
yi

Theorem: Convergence of Averaged Iterates

I If f is convex-concave and L-smooth

I Then, we have

max
y :(x̄k ,y)2S

f (x̄k , y)� min
x :(x,ȳk )2S

f (x , ȳk) 
5D

⌘k

Remark:

I OGDA is an implementable version of PPA

I OGDA enjoys similar convergence guarantee O(1/k)
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EG (I)

Algorithm: Extragradient Method

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:
zk+1

2

= zk � ⌘F (zk)

zk+1 = zk � ⌘F (zk+1

2

)

I Define vector z := [x ; y ]

I Define the operator F as

F (z) := [rx f (x , y);�ry f (x , y)]

I EG utilizes the gradient of

midpoint to update

zk+1

zk

2F (zk)

zk+ 1
2

2F (zk+ 1
2
)

2F (zk+ 1
2
)
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EG (II)

Algorithm: Extragradient Method

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:
zk+1

2

= zk � ⌘F (zk)

zk+1 = zk � ⌘F (zk+1

2

)

I Updates can be written as

zk+1

2

= zk� 1

2

� ⌘F (zk� 1

2

)� ⌘[F (zk)� F (zk�1)]

I When the variations are close to each other, i.e.,

F (zk)� F (zk�1) ⇡ F (zk+1

2

)� F (zk� 1

2

)

EG method approximates PPA

zk+1

2

⇡ zk� 1

2

� ⌘F (zk+1

2

)
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EG (II)
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EG (III)

Algorithm: Extragradient Method

I Initialization: x0 2 Rm, y0 2 Rn
and step size ⌘ > 0

I Iteration:
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2
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zk+1 = zk � ⌘F (zk+1

2

)
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EG (IV)

I Let iterates (xk , yk) be generated by EG with step size ⌘

I Define the averaged iterates (x̄k , ȳk) as

x̄k :=
1

k

Xk

i=1
xi and ȳk :=

1

k

Xk

i=1
yi

Theorem: Convergence of Averaged Iterates

I If f is convex-concave and L-smooth

I Then, we have

max
y :(x̄k ,y)2S

f (x̄k , y)� min
x :(x,ȳk )2S

f (x , ȳk) 
16D

⌘k

Remark:

I EG is an implementable version of PPA

I EG enjoys similar convergence guarantee O(1/k)
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Last Iterate Convergence

The averaged iterate is not always what we want!

I Imagine that we are seeking for a sparse solution x⇤

I Assume x̄ := (x1 + x2 + x3)/3 reaches "-accuracy

x1 =

2

4
1

1

1

3

5 x2 =

2

4
1

1

0

3

5 x3 =

2

4
0

1

0

3

5 x̄ =

2

4
2/3
1

1/3

3

5

Theorem: Last Iterate Convergence

I Let iterates (xk , yk) be generated by EG/PPA

I If f is convex-concave and L-smooth

I Then, we have

max
y :(xk ,y)2S

f (xk , y)� min
x :(x,y k )2S

f (x , y k
) = ⇥

⇣
1
p
k

⌘

Remark: Slower than the averaged iterate results O(1/k)
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