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Robustness in Learning (I)

Standard training: Minimize empirical loss by selecting parameters x

1 N
p— N Zi:]_g(ah b,‘X)

(a;, b;) is a training sample, a; is the input and b; is the expected output

Linear regression: Consider /(a;, bi|x) = ||a] x — b;|?

2 2
L(x) : NZ laj x — bil|* = —||Ax—b||
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Robustness in Learning (II)

Neural network: Consider £(a;, bi|x) = || M(ai|x) — b;||?
. lobel

L(x) = 5" [M(ailx) - b

where M(-

x) denotes the model with parameters x

Convolution Neural Network (CNN)
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Robustness in Learning (III)

¢ (//w— G R T (//e»
\\\\“Vﬁ $0.01X 00 ’ \\\%Vé
TRy e 3y
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» Robust training: Consider inputs with modifications represented as
perturbations y of data.

» It amounts to choosing x to solve the minmax problem:

minim 28,

1 N wort @ of loss > Fobustness |
0,y 2y 2% U3ty bilx)

noise |
where & denotes allowable perturbations
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Minmax Problems

Consider the following minmax problem:

i f
2 s )

Applications:

» Worst-case design (robust optimization): Minimize over x the loss
function with the worst possible value of y
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Minmax Problems

Consider the following minmax problem:

i f
2 s )

Applications:

» Worst-case design (robust optimization): Minimize over x the loss
function with the worst possible value of y

» Duality theory for constrained optimization:

» Primal problem

' <
min f(x), st g(x)<O0

» Lagarangian function / rvgx fo+yo9 — (lse o "’;:”JQX)

Lx,y) = F(x) + yg(x), y >0

» Dual problem is a minmax problem

TS i Loy) = ot —L000)
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: (1) mox min LCX'VU) Q) - M;ﬂ Mo - | (XY)

Convex-concave Functions %o x ) /?’:W Xf@ -
- Maxm;n fo +¥9x) - O - m
7?* minirizes LO6Y) . ﬂ/\en, vippe X poximze. - ) (0v) . then,

CD o J)+ 9900 - ®= - fo-Y9 - @
g <0., Y20
To minimze @ . V=0,
N N )

908‘) <0 . Y=0

To Maximize @, Y<0,
||. |' g Loxy) = &)

f(Xay):X _y

function w.r. function w.r.t. y
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Convex-concave Functions

1 High

function w.r.t. x function w.r.t. y

Definition: Convex-concave Function

The function f(x,y) is convex-concave if
» for any y € R”, the function f(x,y) is a convex function of x; and

» for any x € R™, the function f(x,y) is a concave function of y
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Saddle Points

1 High

Low

f(x,y) = x*> — y? with saddle point (0, 0)

f(olo) < fw'O) S ﬁxrﬂ)
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Saddle Points

1 High

-

Low

f(x,y) = x*> — y? with saddle point (0, 0)

Definition: Saddle Points
A saddle point of the minmax problem is a pair (x*,y*) € R™ x R” that

f(x*,y) < f(x*,y*) < f(x,y")

for all x € R™ and y € R”
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Primal-dual Gap
Define the constant D and the neighborhood S of saddle point (x*, y*)
D:=|xo— x*|>+[lyo — y*II> — |l inwel - ool

S:={(xy): Ix=x*|* +|ly - y*|* < 2D}

!

ol the itochrs wll in S
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Primal-dual Gap
Define the constant D and the neighborhood S of saddle point (x*, y*)
D = [|xo — x*|* + [lyo — y™|I°

S:={(xy): Ix=x*|* +|ly - y*|* < 2D}

Definition: Primal-dual Gap

For fixed x and y, the primal-dual gap is

9 - f _7 - . f ,_ <
fop-fepl<e &  mac fxy) - min fxy) <&

o fxY) = {x) 2 fKYH > mn T0c3)
Remark: 7 g;dpq—\bp,:,,t
» The primal-dual gap is zero iff (X, y) is a saddle point
» We also write the primal dual gap as

max f(X,y)— f(x*,y*)] + [f(x*,y*) — min  f(x,y)
%@ y:(X,y)€S x:(x,y)€S

an 4G >0 >0
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Monotone Operator

Consider the minmax problem with convex-concave objective function
» Saddle point satisfies the first-order optimality condition
Vxf(x*,y*)=0 and V,f(x",y")=0
» Define z := [x; y] € R™"" and the monotone operator

Y ook
F(z) :==[Vxf(x,y) 6foy)] —  F(z*)=0

Definition: Monotone Operator

F is a monotone operator if for any z;, z, € R™*"
(F(z1) = F(z2),z1 —20) > 0

Remark: If h: R” — R is convex, then Vh: R" — R" is monotone
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GDA (1)

Algorithm: Gradient Descent Ascent

» Initialization: xg € R™, y5 € R" and step size n > 0
» lteration: min o)
X

Xk11 = Xk — NV xf (X, Yi) Gradient Descent

Yi+1 = Yk + 0V f(Xk, Yi) Gradient Ascent
L Tx)
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GDA (1)

Algorithm: Gradient Descent Ascent

» Initialization: xg € R™, y5 € R" and step size n > 0
» lteration:

Xk11 = Xk — NV xf (X, Yi) Gradient Descent

Yi+1 = Yk + 0V f(Xk, Yi) Gradient Ascent

» Even for the simplest case, GDA diverges
» Consider the following bilinear problem

min max f(x,y)=x'y
xcRd ycRd

» The GDA updates for this problem

Xk+1 = Xk — NYk

7 Yik+1 = Yk + NXk
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GDA (II)

» The GDA updates for this problem

Xk+1 = Xk — NYk and  Yir1 = Yk + nXg
» At the k-th of GDA, we have

Ixkall® + yisall* = (L 07 (x| + llyell)

» GDA diverges because 1 +n? > 1 (qu)@(llxol\lﬂ“ﬂolf)

{

=) di \/U%

@Q e Saddle (0,0) e Initial (10, 10)
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PPA (I)

Algorithm: Proximal Point Algorithm

» Initialization: x5 € R, yo € R" and step size n > 0

» lteration: The pair (xx11, Ykr1) is the unique solution to

1 1
. f . 2_ . 2 - X'
Ul ey { (x,y)+—2on Xk | _277Hy Y|l } o)

Sty cnvex o X ‘

S‘b’cxgly OV to Y

Optieolsty rofon; w90y = fo(wa'ﬂm) + ’VLO(‘*" 0.0

Q% Vea) = O - 2
{\79 . < e = Xe- ’7'77@00(?*"%‘9

ng(mhyﬂ’d) -0
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PPA (1)

Algorithm: Proximal Point Algorithm

» Initialization: x5 € R, yo € R" and step size n > 0

» lteration: The pair (xx11, Ykr1) is the unique solution to

1 1
: £ . 2 = . 2
rmin, max { (x,y) + —2n\\x X 277Hy Yk }

Remark: lterative steps of PPA can be written as

Xi+1 = Xk — NV F (Xii1, Yier1)
Yir1 = Yk + 0V y (X1, Y1)
Different from GDA steps

Xk+1 = Xk — NV ( Xk, Yi)

Yi+1 = Yk + 0V f (X, yi)
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PPA (II)
» PPA for f(x,y) =x"y

Xk+1 = Xk — NV (Xt 1. }’k+1} — Xk — NYkt1

Yir1 = Yk + 0V (X1, Y1) = Ye + 10Xk 1
» At the k-th iteration of PPA, we have
1

X1l + yesall® = (Ixell” + Nlyell?)

1+ n?
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PPA (11)
» PPA for f(x,y) =x"y
Xk+1 = Xk — NVl Xk 1, Yir1) = Xk — MYkt
Yer1 =Yk +1nVy F( Xkt 15 Y1) = Yr + NXiq1

» At the k-th iteration of PPA, we have
1

1+ n?

(%l + lykll*)

i1 ]1* + llyrral* =

» [rue iterative steps

N _ Xk — NYk
_ Yi + NXk
Yik+1 1+ 772

» PPA converges to saddle point

% e Saddle (0,0) e Initial (10, 10)
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PPA (III)

» Let iterates (xx, yx) be generated by PPA with step size 7

» Define the averaged iterates (Xx, yx) as

)_(k L= %Zle X and _}_'k L= %Zle Yi

Theorem: Convergence of Averaged lterates

» If f is convex-concave and L-smooth

» [ hen, we have

D
max f(Xg,y)— min  f(x,yc) < —
y:(Xc,y)ES ( g y) x:(x,yx)ES ( yk) 77/(

Remark: PPA involves operator inversion and is not easy to implement

Require: Efficient algorithms that behave like PPA! I
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OGDA (1)

Algorithm: Optimistic Gradient Descent Ascent

» Initialization: x5 € R, yg € R" and step size n > 0

» lteration:

Xk+1 = Xk — 20V f (Xk, ¥k ) + 1V (Xk—1, Yk—1)

Yir1 = Yk + 20V f(xk, Yi) =V y f(Xk—1, Yk—1)

Xe = X = Ncfoa ) +7] [ 7l o) —oxfbe ] -1 [cfoet - 2061 o) |
WT diffo/encg/

v

fit. ) - s fO00 A7 Srcfblp) - cfUet. o)

Applications and Methods School of Data Science

Yilin

Gu



OGDA (1)

Algorithm: Optimistic Gradient Descent Ascent

» Initialization: x5 € R, yg € R" and step size n > 0

» lteration:

Xk+1 = Xk — 20V xF (Xi, ¥) + 0V s F(Xk—1, Yk—1)
Yir1 = Yk + 20V f(xk, Yi) =V y f(Xk—1, Yk—1)
Remark: OGDA can be seen as PPA with error term

Xi41 = X — NV f (X1, Yir1) + NEx, k

Yir1 = Yk + NV F( X1, Yier1) — mey «

Approximate using linear extrapolation of the previous gradients

VI (Xkq1 Y1) = VE(xi, yi) + [VF( Xk, yi) — VE(Xk—1, Yk—1)]
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OGDA (I1)

Algorithm: Optimistic Gradient Descent Ascent

» Initialization: xg € R™, yy € R" and step size n > 0

» lteration:

Xk+1 = Xk — 20V xF (Xi, ¥i) + 1V s F(Xk—1, Yk—1)

Yit1 = Yk + 20V f (X, Yi) = 0V F(Xk—1, Yk—1)

» Consider f(x,y)=x"y

» Convergence paths are similar

» OGDA approximates PPA

1B — PPA J/
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OGDA (I1I)

» Let iterates (xx, yx) be generated by OGDA with step size 7

» Define the averaged iterates (Xx, yx) as

)_(k L= %Zle X and _}_'k L= %Zle Yi

Theorem: Convergence of Averaged lterates

» If f is convex-concave and L-smooth

» [hen, we have

5D
max f(Xg,y)— min  f(x,y,) < —
y:(Xc,y)ES ( g y) x:(x,yx)ES ( yk) 77/(

Remark:

» OGDA is an implementable version of PPA
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EG (1)

Algorithm: Extragradient Method

» Initialization: x5 € R, yo € R" and step size n > 0

» lteration: iyl Do) . 97064 ]
z 1 =z — nF(z)

Zp41 = Zk — 77F(Zk+%)
» Define vector z := [x; y]

» Define the operator F as
F(z) :=[Vxf(x,y); =Vyf(x,y)]

» EG utilizes the gradient of
midpoint to update
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EG (1I)

Algorithm: Extragradient Method

» Initialization: x5 € R, yo € R" and step size n > 0

» lteration:
Zb-% = gz—] _7F&1)

Zj 1 =2k — nF(z)

Zp41 = Zk — 77F(Zk+%) Ty = R - HES)

» Updates can be written as
2kl = 21— nF(Zk—%) — n[F(zx) — F(zk-1)]
Zert = % -F@)
= (8 - TFRY) -
(&t + @) - IFE ] - 1F@)
= Tt - FGs) ~ [ - 0]

= %t = )+ [ () -F@0) - (FB) -F)
7 o
XinOte

(1
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EG (1I)

Algorithm: Extragradient Method

» Initialization: x5 € R, yo € R" and step size n > 0

» lteration:
Zj 1 =2k — nF(z)

Ziy1 = Zk — 77F(Zk+%)

» Updates can be written as
2kl = L1 — nF(Zk—%) —n[F(zx) — F(zk-1)]

» When the variations are close to each other, i.e.,

Flze) = F(zk1) = F(ziy1) = F(ze-1) 120

2

EG method approximates PPA ' Jeprosieorty
v

241 N 21— NF(Zei1)
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EG (I1I)

Algorithm: Extragradient Method

» Initialization: xp € R™, yy € R" and step size n > 0

» lteration:
Zj 1 =2k — nF(z)

Zi+1 = 2k — nF(z 1)

» Consider f(x,y) =x'y /

» Convergence paths are similar

.

» EG approximates PPA

w7 — PPA
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EG (IV)

» Let iterates (xx, yx) be generated by EG with step size n

» Define the averaged iterates (Xx, yx) as

)_(k L= %Zle X and _}_'k L= %Zle Yi

Theorem: Convergence of Averaged lterates

» If f is convex-concave and L-smooth

» [hen, we have

16D
max f(Xx,y)— min f(x,yx) < —
y:(Xc,y)€S ( g y) x:(x,yx)ES ( yk) 77/(

Remark:

» EG is an implementable version of PPA
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Last Iterate Convergence

The averaged iterate is not always what we want! I

» Imagine that we are seeking for a sparse solution x*

» Assume X := (X1 + X2 + x3)/3 reaches c-accuracy

1] (1] 0 (2/3]
X1 = 1 Xy = 1 X3 = 1 X = 1
1) 10 10 11/3

SpHee hod-spre
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Last Iterate Convergence

The averaged iterate is not always what we want! I

k

» Imagine that we are seeking for a sparse solution x

» Assume X := (X1 + X2 + x3)/3 reaches c-accuracy

(1] (1] 0 (2/3]
X1 = 1 Xo = 1 X3 = 1 X = 1
1) 10 10 11/3

Theorem: Last lterate Convergence

» Let iterates (xx, yx) be generated by EG/PPA
» If f is convex-concave and L-smooth

» [hen, we have

1
max f(x,y)— min f(x,y*)= @(—)
y:(xk,y)eS ( y) x:(x,yk)eS ( Y ) \/E

@‘33@ Remark: Slower than the averaged iterate results O(1/k)
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